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Abstract 

In a reactive Kripke model, evaluation of logical operators can cause reconfiguration of the 

model in which the formula is evaluated. Therefore, in reactive Kripke frames, the 

evaluation of a logical formula in a world depends both on the world in which the evaluation 

is made and on the worlds it has passed through previously. The result is an extended 

semantics, which can specify a class of modal logics more comprehensive than the class 

specified by ordinary Kripke frames. This paper introduces a metamodel for reactive Kripke 

frames, based on the concept of categorical sketch. We believe that the categorical sketch is 

an appropriate metamodel for specifying a Kripke frame model. 
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1 Introduction 

Modal logic extends classical logic with denoted modal operators, usually with the 

symbols ◻ and ♢, which express the way in which a logical formula is satisfied. The 

interpretation of modal operators depends on the concept of truth that we want to 

specify through logical formulas. Thus, some modalities that have been formalized in 

modal logic include: alethic or truth modalities, where ◻ has the meaning of 

"necessary" and ♢ has the meaning of "possible"; deontic modalities where ◻ has the 

meaning of "mandatory" and ♢ has the meaning of "permitted"; epistemic modality or 

modes of knowledge where ◻ has the meaning of "it is known that" or modes of 

belief where ◻ has the meaning of "it is believed that". Real applications define many 

other interpretations of these symbols. In general, the operators ◻ and ♢ are not 

independent but are linked by the relation ♢φ=◻φ. 

Formulas from modal logic cannot be interpreted on the basis of truth tables. For 

example, for ◻p, where p is an atomic proposition, we cannot define a truth table 

because when p is true in one interpretation, it does not follow that p is true in all 

interpretations. The reference semantic model for modal logic is the "possible worlds" 

model, introduced by Saul Kripke in 1959. A Kripke frame is a structure consisting of 

a set S of possible worlds and a binary relation R on the set S, in other words a Kripke 

frame is a graph whose nodes are possible worlds and whose arcs represent the 

accessibility of each world to other possible worlds. 

In 2004, D. Gabbay introduced a concept of reactivity which assumes that reactive 

frames are relational structures in which the structure of a frame, at a given moment, 

is determined not only by the world in which it is located, but also by previous worlds 

[4]. In other words, each transition, from one world to another, can modify the 

relational structure of the frame. 
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The specification of such reactive structures is based on graphs endowed with several 

types of arrows, single arrows, double arrows and sometimes triple arrows. Double 

arrows connect nodes with other arrows, or arrows between them [4, 8]. In this 

approach, the double arrows have the role of alternately changing the state of the 

target arrows from active to inactive and vice versa during the transitions of the 

relational structure. This process is cumulative and results in the dynamic 

transformation of the relational structure of the system. 

This idea of dynamic reconfiguration of a relational structure has applications in 

various modeling fields such as the extension of modal logic to reactive modal logic, 

the extension of context-independent grammars to reactive context-independent 

grammars, the definition of reactive automata and other reactive structures [5, 7, 6, 

10]. 

In the relational semantics of modal logic, different worlds are considered in which 

the values of the propositions change depending on the values of the propositional 

variables in these worlds. Therefore, the value of a sentence depends exclusively on 

the accessible worlds. But in a Kripke model the accessible worlds are fixed. In a 

reactive Kripke model, evaluation of logical operators can cause reconfiguration of 

the model in which the formula is evaluated. In [4], this reconfiguration is specified 

by double arrows, which enable or disable other arrows. 

The modeling of reactive Kripke frames is based on a type of special graphs that 

undergo certain transformations when its edges are traversed and which are called 

reactive graphs. Therefore, in reactive Kripke frames, the evaluation of a logical 

formula in a world depends both on the world in which the evaluation is made and on 

the worlds it has passed through previously. The result is an extended semantics, 

which can specify a class of modal logics more comprehensive than the class 

specified by ordinary Kripke frames [11]. 

This paper introduces a metamodel for reactive Kripke frames, based on the concept 

of categorical sketch. We believe that the categorical sketch is an appropriate 

metamodel for specifying a metamodel for Kripke frames.  

Section 2 contains some general notions and notations used in the rest of the paper. 

Section 3 presents the static dimension of the Kripke frame models, section 4 presents 

the reactive dimension of the reactive Kripke frame models, and section 5 concludes 

the paper with some conclusions. 

2 General notions and notations 

The basic modal propositional logic language is built on the vocabulary formed by a 

set P, of atomic propositions, to which are added the usual operators from 

propositional logic and two unary modal operators, which we denote by ◻ and ♢. In 

the modal logic of truth, the operator ◻ is read "necessary", and ♢ is read "possible". 

In the BNF notation, well-formed formulas from modal logic are defined as follows: 

<Wff>::=<Proposition>|(￢ <Wff>) |  

      (<Wff > ∧ < Wff >) |(<Wff > ∨ < Wff >) | (<Wff > → < Wff >) |  

     (<Wff >  < Wff >) |◻ (<Wff >) | ♢(<Wff >) 

where <Proposition> represents any atomic proposition from the set P and each 

occurrence of <Wff> represents a well-formed formula. We denote the set of well-

formed formulas, with W. 
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A Kripke model consists of a set S of possible worlds, a binary relation, of 

accessibility, R on the set S and an application L:S→2P, which associates to each 

possible world sS, a set of well-formed formulas, satisfied in the world s. The pair 

F=(S, R), is a graph called a Kripke frame 

We will denote the satisfaction relation of a well-formed formula φ in a world sS 

with s⊩φ. If we have a Kripke model M=(S, R, L), and a world sS, then the 

satisfaction for a well-formed formula φ is defined recursively [2] as described below. 

For operators from classical logic, the satisfaction condition is that L(s) be a model for 

the formula φ, that is: 

“s⊩p iff p∈L(s), where p is an atomic proposition; s⊩¬φ iff s⊮φ; 

s⊩φ ∧ ψ iff s⊩φ and s⊩ψ; s⊩φ ∨ ψ iff s⊩φ, or s⊩ψ; 

s⊩φ → ψ iff s⊩φ implies s⊩ψ; s⊩φ ↔ ψ iff (s⊩φ iff s⊩ψ)”; 

and for modal operators, satisfaction is defined as follows: 

“s⊩◻ψ iff,  s1∈S with R(s, s1), it results s1⊩ψ; 

s⊩♢ψ iff s1 ∈ S with, R(s, s1) and s1⊩ψ.” 

As we can see, the satisfaction of the formula ◻ψ is conditioned by the satisfaction of 

ψ in all accessible worlds in s, and the satisfaction of the formula ♢ψ is conditioned 

by the satisfaction of ψ in at least one accessible world in s. This observation tells us 

that the validity of a modal logic formula, depends to a great extent on the 

accessibility relation R, i.e., on the graph corresponding to the Kripke model. 

Therefore, the validity of a modal formula can be realized or cancelled by an 

appropriate transformation of this graph. 

The evaluation of logical formulas is done starting from a set of formulas or schemes 

of logical formulas that we impose as true, in the context of a model, and which are 

called axioms. The validity of these formulas, in a Kripke model, can be imposed by 

conditions on the graph that represents the relation R on the set S of possible worlds. 

In this paper, we will enforce the realization of these axioms or axiom schemes, at the 

metamodel level, using the concept of a categorical sketch. We consider that the 

categorical sketch is a metamodel capable of specifying all the constraints necessary 

to specify a Kripke frame, customized and appropriate to the concrete requirements of 

practical applications.  

A categorical sketch is a graph that represents a metamodel together with a series of 

constraints on the models represented by this metamodel. 

In general, this metamodel can be approached in any category, but in this paper, we 

will use the Graph category, which has graphs as objects and graph homomorphisms 

as arrows. The graph component of the sketch specifies the structural dimension of 

the models. The nodes of this graph are typed and most often represent concepts of 

the model. 

The sketch constraints are represented by predicate symbols that together with their 

signatures form the concept of diagram predicate signature [15, 16]. The predicate 

symbols together with the logical dependencies between them form a category that we 

denote by 𝜫. 

If 𝜫 is a category of predicates and dependencies, then a functor 𝛂:𝜫→Graph is 

called a graph signature. Each object 𝛂(P), P𝜫0, is called the shape graph arity of P. 

Each arrow 𝛂(r), r𝜫1, is a morphism in the Graph category: 𝛂(r):𝛂(P1)→𝛂(P2), 

where P1,P2𝜫0, and is called signature substitution [12]. 

A diagram is a functor d:𝓟→ 𝓖, where 𝓟,𝓖Graph0. The domain 𝓟 of a diagram d is 

called a shape graph. If 𝓖Graph0, then a 𝜫-formula, over 𝓖, is a pair (P,d), where P 
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is a predicate P𝜫0, and d is a diagram d:𝛂P→𝓖. We will denote a 𝜫-formula (P,d), 

more simply, by P(d). We denote the set of 𝜫-formulas over the graph 𝓖Graph0, by 

Fm(𝜫,𝓖). Therefore Fm(𝜫,𝓖)={P(d) | P𝜫, dGraph(𝛂(P), 𝓖)}. The set of formulas 

Fm(𝜫,𝓖), together with the inference relation form a category [12], If there is no 

confusion we will call a 𝜫-formula, simply a formula. 

A generalized sketch over a signature 𝜫, is made up of a graph 𝓖Graph0, and a 

subcategory of 𝜫-formulas 𝓣⊆Fm(𝜫,𝓖), closed to the inference, i.e., it satisfies the 

condition: if P(d)𝓣 then also Q(d(𝛂(r)))𝓣. Therefore, a generalized sketch is a 

tuple 𝓢=(𝓖,𝓣), where the graph 𝓢, specifies the structure of a model, and the objects 

of the category 𝓣 are constraints on the models imposed by formulas. 

To define an instance of a generalized sketch we will use the slice category [1]. If 𝓖 is 

an object 𝓖Graph0, the slice category, which we denote by Graph↓𝓖, has as objects, 

pairs (𝓗, ), where 𝓗Graph0 and Graph1 is a morphism :𝓗→𝓖, and as arrows 

between each two objects (𝓗1, 1), (𝓗2, 2), a morphism from Graph :𝓗1→𝓗2. 

If 𝓢=(𝓖, 𝓣), is a sketch, and 𝓣 is the empty category, i.e. it does not contain any 

constraints, then for any object :𝓗→𝓖 from the slice category Graph↓𝓖, the domain 

𝓗 of  is an instance of the sketch 𝓢. We denote by 𝓘(𝓖), the set of all these 

instances. 

To define the instances subject to certain constraints, we will use the concept of 

pullback. For a cospan(,), we denote the corresponding pullback by PLB(,). The 

pullback PLB(,), is a span that we denote by span(*,*), with the property that   

  ⃘*=  ⃘*. We also denote *=PLB() and *=PLB(). 

We notice that if we have two instances 𝓗1,𝓗2𝓘(𝓖), corresponding to the objects 

(𝓗1,1),(𝓗2,2)ob(Graph↓𝓖), then dom(PLB(1,2))=dom( , ),  is also an 

instance, dom(PLB(1,2))𝓘(𝓖), because there is a morphism *= 1  ⃘ =2  ⃘ . 

Now we can define an instance 𝓗𝓘(𝓖), which satisfies a formula P(d). If 𝓢=( 𝓖, 𝓣), 

is a generalized sketch, then an instance 𝓗𝓘(𝓖), corresponding to the object (𝓗,), 

from the Graph↓𝓖 category, satisfies the formula P(d) 𝓣0, if there is a another 

instance 𝓗1𝓘(𝓖), corresponding to the object (𝓗1,1), from the Graph↓𝓖 category, 

so that 𝓗=dom(PLB(1,d)). We denote the set of instances that satisfy the formula 

P(d) by 𝓘(𝓖,P(d)).\ 

We can now define an instance of a sketch. If 𝓢=(𝓖, 𝓣), is a generalized sketch, then 

an instance 𝓗𝓘(𝓖), is the instance of the sketch 𝓢, if 𝓗 satisfies all the formulas 

P(d)𝓣0. We denote by 𝓘(𝓢) the set of all instances of the sketch 𝓢. 

3 The static dimension of the model 

In the modelling of real systems, the set S of possible worlds overlaps, most of the 

time, with the set of states of the model, characterized by logical formulas [13, 3, 14]. 

Also, in such models, the transition from one state to another is done by the actions of 

an agent who acts in order to achieve certain objectives specified by logical formulas 

that must be satisfied. 

In this context, a transition system evolves through the actions of an agent who seeks 

to achieve some objectives expressed through logical formulas. Usually, the agent acts 

on the basis of a plan that involves the execution of several successive actions. When 
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there are several plans, which lead to the achievement of the objectives, the agent 

must choose the optimal plan based on a logic that characterizes it [3, 14]. 

Modal logics are characterized by schemes of axioms which are schemes of logical 

formulas, assumed to be true without demonstration, and which are the basis of 

reasoning. Thus an important scheme of formulas, assumed to be true in almost all 

modal logics, is "◻(φ→ψ) ∧ ◻φ→◻ψ", called axiom K, after Saul Kripke, who 

introduced the Kripke models [2, 9]. 

A series of other axioms, which were imposed in modal logic, received names such 

as: axiom T "◻φ→φ"; axiom B "φ→◻♢φ"; axiom D "◻φ→♢φ"; axiom 4 

"◻φ→◻◻φ" and axiom 5 "♢φ→◻♢φ". Based on these names of the axioms, modal 

logics were also named over time. Similarly, many modal logics have the prefix of the 

name K, which expresses the satisfaction of the axiom K, followed by the names of 

the other axioms. For example, KT45 logic, characterized by axioms T, 4 and 5, 

which is also sometimes called S5 modal logic and is used to reason about knowledge. 

As we saw in section 2, the evaluation of a formula, in modal logic, largely depends 

on the graph structure of the Kripke model, i.e. the Kripke frame. It is demonstrated 

that in a Kripke model M=(S,R,L), there is an implicit correspondence between the 

relation R and the satisfaction of the modal logic formulas [2, 14]. Thus, axiom K is 

satisfied in any Kripke frame, axiom T is satisfied if and only if R is reflexive, axiom 

B is satisfied if and only if R is symmetric, axiom D is satisfied if and only if R is 

serial, axiom 4 is satisfied if and only if R is transitive, axiom 5 is satisfied if and only 

if R is Euclidean, and so on. Therefore, if we want, for example, an agent to 

rationalize in KT45 logic, we will have to set the condition that the Kripke model 

according to which it evaluates the logical formulas is equipped with a relation R, 

reflexive, transitive and Euclidean. 

All these restrictions on the relation R can be expressed by logical predicates. 

Therefore, the axioms of modal logic can be expressed by logical predicates. Since a 

Kripke frame involves the concepts of world and relationship, the predicates will have 

parameters of these types, that is, the world type, which we denote by w, and the 

relation type, which we denote by . Also, if u,vw, and uv, we will denote this fact 

with (u,v). 

With these notations, the axiom T can be expressed by the predicate: 

PT(u,v)=(uw)→(u,u). 

Axiom B is satisfied if and only if the predicate: PB(u,v)=(uw)(vw)(u,v)→ 

(v,u), is satisfied. 

Axiom D, is satisfied if and only if the predicate: PD(u,v)=(uw)→(vw)(u,v), 

is satisfied. 

Axiom 4 is satisfied if and only if the predicate: P4(u,v)=(uw)(vw)(tw) 

((u,v))((v, t)) → (u,t), is satisfied. 

Axiom 5 is satisfied if and only if the predicate: P5(u,v)=(uw)(vw)(tw) 

((u,v))((u, t)) → (v,t), is satisfied. 

In this way, we can impose other logical formulas on the Kripke frame, specific to the 

logic we want to impose on an agent. For example, the formula "◻φ ↔ ♢φ" is 

satisfied if and only if the Kripke frame is functional, i.e. if and only if it satisfies the 

predicate PF(u,v)=(uw→(!vw)(u,v), and the formula 

"◻(φ∧◻φ→ψ)∨◻(ψ∧◻ψ→φ)" is satisfied if and only if the Kripke frame is linear, 

i.e. if and only if it satisfies the predicate : 

PL(u,v)=(uw)(vw)(tw)((u,v))((u,t))→((v,t))(v=t)((t,v)). 
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When we want to specify a Kripke model, we will include in the set of objects of the 

𝜫 category, all the predicates that represent formulas that we want to impose on the 

model. For example, if we want an agent to reason in a KTB4 logic, we will include 

in the set of objects of the 𝜫 category, the predicates PT, PB and P4. We will denote 

this set of objects by , and we will call them atomic formulas. 

We then define the category 𝜫, inductive, as follows: 

i) If P , then P𝜫0. 

ii) If P1,P2𝜫0 then P=(P1), P=(P1)(P2), P=(P1)(P2), P=(P1)→(P2), 

P=(P1)(P2)𝜫0, and the dependencies P1⊣P, P2⊣P  𝜫1. 

iii)  If P1𝜫0, then P= (xP1), P=(xP1)𝜫0, and the dependencies P1⊣P𝜫1. 

iv)  Any object in 𝜫0, and any arrow in 𝜫1, are obtained by successively applying, a 

finite number of times, rules i), ii) and iii). 

For example, in the case of KTB4 logic, the predicates: PTB1(u,v)=PT(u,v)PB(u,v), 

PTB2(u,v)=PT(u,v)PB(u,v), PTB41(u,v)=PT(u,v)PB(u,v)P4(u,v), will be 

contained in the set of objects 𝜫0, and the dependencies PT(u,v)⊣PTB1(u,v), 

PB(u,v)⊣PTB1(u,v), PT(u,v)⊣PTB2(u,v), PB(u,v)⊣PTB2(u,v), PT(u,v)⊣PTB41(u,v), 

PB(u,v)⊣PTB41(u,v), P4(u,v)⊣PTB41(u,v)𝜫1. 

Since a Kripke frame has only one type of node, namely type w, and only one type of 

arrow, namely , all the predicates defined above have as shape graph, a graph 𝓟, 

with a single node and a single arrow on which we denote, as in the case of 

parameters, with w and  respectively. Therefore, the shape graph arity application 

𝛂:𝜫→Graph, is defined as 𝛂(w)=w and 𝛂()=, for all predicates in 𝜫0. 

Let's now build the categorical sketch corresponding to a Kripke frame. As we 

defined it, in section 2, a generalized sketch is a tuple 𝓢=(𝓖, 𝓣), where the graph 𝓢, 

specifies the structure of a model and the category 𝓣, specifies the constraints 

imposed on the models by formulas. 

In a categorical sketch, the graph 𝓖 has the role of classifying the concepts in a model, 

by specifying the types of concepts and the relationships between them. In the case of 

the Kripke frame model, we have only two concepts, namely; the world concept, 

which we denote with 𝓌, and the relation concept, which we denote with 𝓻. We also 

have a single diagram d:𝓟→𝓖, defined as follows: d(w)=𝓌 and d()=𝓻. 

In this context, the objects of category 𝓣 are generated by subsets of the set: {PT(d), 

PB(d), PD(d), P4(d), P5(d), PF(d), PL(d)}, in accordance with the definition of 

category 𝜫, from above. Of course, this set can be expanded with other formulas 

specific to the concrete model we want to build. Notice that the set of objects 𝓣0 

contains all well-formed formulas based on the constraints imposed on the model by 

the set 𝜫0 of predicates. Therefore, there is a formula P(d)𝓣0, so that the constraints 

of the specific Kripke frame model can only be imposed by satisfying the formula 

P(d). 

For example, if we want the relation R, of the model to be an equivalence relation, it 

is enough to impose the satisfaction of the formula P(d)=PT(d)PB(d)P4(d), i.e. to 

be reflexive, symmetric and transitive. 

But an instance 𝓗𝓘(𝓖), corresponding to the object (𝓗,), from the category 

Graph↓𝓖, satisfies the formula P(d)𝓣0, if there is another instance 𝓗1𝓘(𝓖), 

corresponding to the object (𝓗1, 1), from the Graph↓𝓖 category, so that 

𝓗=dom(PLB(1,d)). 
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Next, we will show that any instance of the sketch is represented by a fixed point of 

an endofunctor of the Graph↓𝓖 category. For this we define an endofunctor 

:Graph↓𝓖→Graph↓𝓖, like this: for each object (𝓗,)Graph↓𝓖,   ((𝓗,))= 

(dom(PLB(,d),   ⃘*), and the arrows between two objects ((𝓗1, 1) and (𝓗2, 2)  

are the arrows from the Graph↓𝓖 category, between the objects dom(PLB(1,d)), 

dom(PLB(2,d)) ob(Graph↓𝓖). 

Since the pullback never adds new components to a graph, but selects all the 

components that respect the constraints imposed on the model, it follows that if 𝓗 is a 

model of the sketch, represented by the object (𝓗,)Graph↓𝓖, then ((𝓗,))=(𝓗,) 

that is, 𝓗 is represented by a fixed point of the endofunctor . Obviously, if the 

graph 𝓗, has components that do not satisfy the constraints P(d), these components 

will be eliminated and therefore (𝓗, ) is not a fixed point for the endofunctor . 

In the case of systems modelling, when the set of possible worlds overlaps with the 

set of states, the set of states is given by the possible evolutions of the system and 

therefore the set of possible worlds is fixed. Also, the set of transitions forms a 

minimal relation on the set of possible worlds that must be included in the relation of 

any instance of the Kripke frame of the model. From here it follows that any instance 

of the Kripke frame model does nothing but extend the relation R to a minimal 

relation that respects the constraints. We also note that the graph of the sketch 𝓖 is a 

terminal object in the Graph category, from which it follows that each instance, of the 

sketch, is represented by a single object (𝓗,), from the Graph↓𝓖 category. These 

observations lead us to the conclusion that, in the case of systems modelling, we can 

determine a minimal relationship on the set of system states that satisfies the 

constraints imposed on the model. 

4 The reactive dimension of the model 

When there are several plans, which lead to the achievement of the objectives, the 

agent must choose the optimal plan based on some values [3]. Therefore, the agent 

must be able to carry out reasoning in various logics, to fulfil the objectives, 

depending on the values it is pursuing. 

The process of tracking the achievement of some objectives, through different types 

of reasoning, involves the dynamic adaptation of the Kripke frame in which the 

logical formula is evaluated. A Kripke model is reactive if the model instance changes 

as it is traversed to evaluate a formula. This means that the constraints applied to an 

instance change during the evaluation of a logical formula. 

We consider a transition system that evolves through the actions of an agent. The 

actions of the agent are decided according to the realization of some logical formulas. 

Thus, if we have a finite set of propositional variables P={p,q,...}, a transition system 

is a construct of the form TS=(S,A,T,L), where S is the set of states, A is the set of 

actions that the agent can perform, T is a set of transitions, tSAS, between states 

by executing some actions, and L is an application L:S→2, which selects the 

propositions in P, which are satisfied in each state sS. 

In this transition system, in each state, the choice of an action by the agent is 

conditioned by the realization of a formula from the modal logic. The evaluation of 

these formulas is done in a Kripke frame in which the set of possible worlds overlaps 

with the set S of states, and the accessibility relation is given by the transition relation. 

9
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In a classic Kripke model, the accessibility relationship does not change in the 

evaluation process, but in the reactive model, this relationship adapts dynamically, 

depending on the mode of reasoning that the agent will adopt in the respective 

context. 

It is obvious that the set of possible worlds will overlap with the set of possible states 

of the transition system also in the reactive case and only the accessibility relation will 

be adapted. Also, the accessibility relation defined by the transitions of the system 

will be included in all instances of the reactive Kripke model, because the imposition 

of additional constraints involved the expansion of this relation. We will denote by 

F0=(𝓦,𝓡0), the Kripke frame defined by a transition system as follows: 𝓦=S and for 

each pair u,v𝓦, we make 𝓡0(u,v)=true if there is a transition (u,a,v)T, aA and 

𝓡0(u,v)=false, otherwise. Obviously, F0𝓘(𝓖), where 𝓖, is the graph of the sketch 

𝓢. We will call the relation 𝓡0, the initial relation of the Kripke frame instance. 

Example 4.1. If we consider the transition system from Fig. 1, where P={p,q}, then 

the initial instance F0, is defined as follows (Fig. 2): 𝓦={S1,S2,S3,S4}, 

𝓡0(S1,S2)=true; 

𝓡0(S1,S4)=true; 𝓡0(S2,S3)=true; 𝓡0(S3,S1)=true; 

𝓡0(S3,S2)=true; 𝓡0(S4,S2)=true and otherwise 𝓡0(Si,Sj)=false. 

Let's evaluate the formula S1|=
2q, in F0=(𝓦,𝓡0). In order for this formula to be 

satisfied in S1, the subformula q will have to be satisfied in all accessible states from 

S1, that is, the formulas: S2|= q, S4|= q must be satisfied. In order for S2|= q to be 

satisfied, q must be satisfied in state S3, which is true, and for S4|= q to be satisfied, q 

must be satisfied in S2, which is true. Therefore, F0 satisfies the formula S1|=
2q.  

Let us now consider a set of predicates P1,P2,…Pn𝜫0, which specify constraints on a 

Kripke frame F0=(𝓦,𝓡0). Then for each predicate Pi, we have an instance Fi=(𝓦,𝓡i), 

which satisfies the constraint imposed by this predicate. As we saw, in section 3, each 

instance 𝓡i is represented by a fixed point of the functor :Graph↓𝓖 →Graph↓𝓖. 

In the Reactive Kripke frame model, we need to impose restrictions specified by a 

predicate Pi, i=1,n, or by a conjunction of such predicates, when we want to impose 

several such constraints simultaneously. 

S1;{p} S
2
;{q} S

3
;{q} 

S
4
;{p,q} 

Fig. 1. Example, transition system 

a 

b a 

b 

a 

b 

S1;{p} S
2
;{q} S

3
;{q} 

S
4
;{p,q} 

Fig. 2 Example, the initial instance 
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It is easy to prove that if the relation 𝓡i, imposes the constraint Pi, and the relation 𝓡j, 

imposes the constraint Pj, then the relation 𝓡i,j= 𝓡i𝓡j, imposes the condition PiPj. 

Therefore, if we know the relations 𝓡i, i=1,n, we can easily build any relation that is a 

disjunction of known relations. We will denote by 𝓡, the set of all possible relations 

in a Kripke reagent. 

Therefore, the set 𝓡, of all possible relations in a reactive Kripke frame, is defined 

recursively as follows: 

i) 𝓡0 𝓡 and if Pi𝜫0, then 𝓡i𝓡; 

ii) If 𝓡i, 𝓡j𝓡 then 𝓡i𝓡j𝓡. 

At each step of evaluating a modal formula, one of the relations from the set of 

relations 𝓡 will be selected, depending on the path travelled to the current world. The 

set of possible paths is a language on the set of possible worlds 𝓛 𝓦*. 

Therefore, a Kripke frame instance is a construct of the form FR = (𝓦,𝓡, 𝓛,), where 

𝓦 is the set of possible worlds, 𝓡 is the set of possible relations, 𝓛 is a language on 

the set 𝓦, and :𝓛→ 𝓡 is an application that selects the appropriate relationship for 

each possible path. In this context, if we denote by  the path through which the world 

s was reached, the evaluation of the modal operators will be done as follows:  

„s⊩◻ψ iff,  s1∈𝓦 with ()(s, s1), it results s1⊩ψ; 

s⊩♢ψ iff  s1∈𝓦 with ()(s, s1)  and s1⊩ψ”. 

 
Example 4.2. If in example 4.1, we impose the restriction specified by the PT(u,v) 

predicate, then the resulting relation, which we denote by 𝓡1, becomes a reflexive 

relation (Fig.3): 𝓡1(S1,S2)=true; 𝓡1(S1,S4)=true; 𝓡1(S2,S3)=true; 𝓡1(S3,S1)=true; 

𝓡1(S3,S2)=true; 𝓡1(S4,S2)=true; 𝓡1(S1,S1)=true; 𝓡1(S2,S2)=true; 𝓡1(S3,S3)=true; 

𝓡1(S4,S4)=true; and otherwise 𝓡1(Si,Sj)=false.  

The relation corresponding to the predicate PB(u,v), which we denote by 𝓡2, becomes 

a symmetrical relation (Fig.4): 𝓡2(S1,S2)=true; 𝓡2(S1,S4)=true; 𝓡2(S2,S3)=true; 

𝓡2(S3,S1)=true; 𝓡2(S3,S2)=true; 𝓡2(S4,S2)=true; 𝓡2(S1,S1)=true; 𝓡2(S2,S2)=true; 

𝓡2(S3,S3)=true; 𝓡2(S4,S4)=true;  𝓡2(S2,S1)=true; 𝓡2(S1,S3)=true; 𝓡2(S4,S1)=true; 

𝓡2(S2,S4)=true; and otherwise 𝓡2(Si,Sj)=false. 

By imposing the constraints specified by the predicates PT(u,v) and PB(u,v), together 

we obtain a symmetric and transitive relation 𝓡1,2 =𝓡1 𝓡2, and therefore 𝓡={𝓡0, 

𝓡1, 𝓡2, 𝓡1,2}. Let's define the application , as follows: (S1)= 𝓡0; ( S1S2)= ( 

S1S1)=𝓡1; ( S1S4)= 𝓡2; ( )= 𝓡1,2 otherwise. 

We notice that if we evaluate the formula S1|=
2q, using the new Kripke frame 

FR=(𝓦,𝓡, 𝓛,), it is no longer satisfied, because reflexivity requires that the 

sentence q should also be satisfied in the state S1. 

S1;{p} S
2
;{q} S

3
;{q} 

S
4
;{p,q} 

Fig. 3. Example, reflexive instance 

S1;{p} S
2
;{q} S

3
;{q} 

S
4
;{p,q} 

Fig. 4. Example, symmetrical instance 
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5 Conclusions 

The most important conclusion is that category theory offers all the necessary 

mechanisms for the specification and analysis of diagrammatic models, including 

classical or reactive Kripke models. We can find, from section 3, that based on some 

atomic predicates that impose constraints on Kripke structures, we can then easily 

construct any constraint, formulated in terms of these atomic constraints. 

In the case of systems modeling, the set of possible worlds overlaps with the set of 

possible states, and therefore the set of possible worlds is also determined and the set 

of transitions forms a minimal relation on the set of possible worlds that must be 

included in the relation of any instance of the Kripke frame of the model. 

Any instance of the Kripke frame model, extends the relationship given by the 

evolution of the system, to a minimal relationship that respects the constraints. These 

observations lead us to the conclusion that, in the case of systems modeling, we can 

determine a minimal relationship on the set of system states that satisfies the 

constraints imposed on the model. This subject will be treated in a future work where 

we intend to provide algorithms for the effective calculation of reactive Kripke frames 

for semantic models expressed in terms of transition systems. 
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