
DOI: 10.2478/ijasitels-2022-0001

In search for the simplest example that

proves Huffman coding overperforms

Shannon-Fano coding

Macarie BREAZU1, Daniel I. MORARIU1,

Radu G. CREȚULESCU1, Antoniu G. PITIC1,

Adrian A. BĂRGLĂZAN1
1Computer Science and Electrical and Electronics Engineering Department,

Faculty of Engineering, “Lucian Blaga” University of Sibiu, Romania

{macarie.breazu, daniel.morariu, radu.cretulescu, antoniu.pitic,

adrian.barglazan} @ulbsibiu.ro

Abstract

Shannon-Fano coding (SFC) and Huffman coding (HC) are classic and well-known

algorithms, but still in use today. The search for the simplest example that proves HC

overperforms SFC is still of interest. The problem is not as trivial as it looks like at first view

because of several decisions that must be considered. We perform a full-search of the stream

data space for a maximum stream length of 100. Depending on additional requests we

impose, the simplest solution we found is {1,1,1,1,3} when we accept to select a specific

cutting, {2,3,3,3,7} when we accept only deterministic (unique) cuttings and {4,5,6,7,14}

when we also ask for different frequencies for symbols as well.

Keywords: Shannon-Fano, Huffman, coding, simplest example

1. Introduction

In our days, of Internet and Big Data, the need for compression is more than obvious.

The data compression domain started with Claude Shannon’s 1948 paper "A

Mathematical Theory of Communication" [1], where he also proposed the (Shannon)

entropy concept. He also proves, in his famous source coding theorem, that entropy

represents an absolute mathematical limit on the performance of lossless data

compression methods.

Until 1952 Shannon [1], Fano [2] and Huffman [3] proposed coding methods to

(more) efficiently code symbols based on their probabilities. It was proven that the

Huffman method is optimal for symbol-by-symbol coding methods [3]. But, for most

simple examples, all the methods produce same results…

For binary coding (i.e., the alphabet of the code is binary) the entropy is maximized

for equal (0.5-0.5) probability of code symbols, a result that was at the core of the

proposed coding methods.

3

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

From the point of view of the way the statistic source model changes in time while

coding (static, semistatic or dynamic), all the methods described above fall in the

semistatic case: first we have to evaluate the probabilities (frequencies), then build the

model (codes), and finally use the model unchanged for coding.

Although classic, the presented algorithms are still of interest, mainly as entropy

coders in more advanced coding schemes ([7],[8]), but also in research ([4]).

2. Shannon-Fano coding

In [5] Krejči et. all explain: “Around 1948, both Claude E. Shannon [1] and Robert M.

Fano [2] independently proposed two different source coding algorithms for an

efficient description of a discrete memoryless source. Unfortunately, in spite of being

different, both schemes became known under the same name Shannon–Fano coding.

There are several reasons for this mixup. For one thing, in the discussion of his coding

scheme, Shannon mentions Fano’s scheme and calls it “substantially the same” [1, p.

17]. For another, both Shannon’s and Fano’s coding schemes are similar in the sense

that they both are efficient, but suboptimal prefix-free coding schemes with a similar

performance.”

Shannon's method starts by deciding the lengths of all the codewords based on the
⌈−𝑙𝑜𝑔2𝑝𝑖⌉ formula, and then select prefix codes having lengths accordingly. Fano’s

method is based on recursively dividing the sorted set of symbols in subsets.

We will further consider, as Shannon-Fano Coding (SFC), the Fano’s

implementation, because it is, in our days, more popular by far and, as stated in [5],

“Fano coding — while still suboptimal — usually performs slightly better than

Shannon coding”.

Shannon describes in [1] the method of Fano as follows: “His method is to arrange the

messages of length N in order of decreasing probability. Divide this series into two

groups of as nearly equal probability as possible. If the message is in the first group its

first binary digit will be 0, otherwise 1. The groups are similarly divided into subsets

of nearly equal probability and the particular subset determines the second binary

digit. This process is continued until each subset contains only one message”.

We will follow the classical implementation that follows the description above and, as

usual, we will use a recursive approach for the two resulting subsets. For each

prospective position for cutting (division) we compute the left sum and the right sum

and select the cutting point according to the minimum absolute difference of that

sums.

The approach is a top-to-bottom approach, the corresponding tree being built from

root to leaves.

We consider the ascending order for sorting because, by using that order, we only

exchange “0” and “1” in codes (performance remains the same), but the resulting

4

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

codes looks more like the ones generated by HC.

An example of applying the SFC on an input consisting of 1 A, 2 B’s, 3 C’s, 4 D’s

and 5 E’s is presented in Fig. 1. The resulting codes are:

A=”000”, B=”001”, C=”01”, D=”10” and E=”11”

The total number of bits generated by coding is:

1*3+2*3+3*2+4*2+5*2 = 33 bits.

3. Huffman coding

In 1952 David A. Huffman, a student of Robert Fano, proposed "A Method for the

Construction of Minimum-Redundancy Codes" [3].

Huffman coding (HC) method is briefly described as follows:

• Create a list containing nodes for each symbol (and its frequency). The list

is sorted in ascending order of the frequencies.

• While the list contains more than one node:

• Remove the first two nodes (i.e., with minimum frequencies) from the

list.

• Insert a new node having the two removed nodes as left child and

right child and the frequency the sum of child frequencies.

At the end the last node from the list is the root of the coding tree. The code of

each symbol is given by the path from root to leaf adding a “0” for going to the

left child and “1” for going to the right child.

Figure 1. The {1,2,3,4,5} Shannon-Fano Coding (SFC) example

5

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

The approach is a bottom-to-top approach, the corresponding tree being built from

leaves to root.

The presented approach falls in the semistatic modelling case but is well-known

(erroneously) as “Static Huffman”, probably as opposite to the Dynamic Huffman

method (which uses a true dynamic modelling, [6]).

An example of applying the HC on the same input consisting of 1 A, 2 B’s, 3 C’s, 4

D’s and 5 E’s is presented in Fig. 2. The resulting codes are:

A=”000”, B=”001”, C=”01”, D=”10” and E=”11” (same as SFC).

The total number of bits generated by coding is:

1*3+2*3+3*2+4*2+5*2 = 33 bits (same as SFC).

Figure 2. The {1,2,3,4,5} Huffman Coding (HC) example

6

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

4. The research question and approach

As we can notice from the two previous examples, in simple cases SFC and HC give

the same results (and performance). The general (theoretical) statement ([6]) is that

HC overperforms SFC but without given examples. In [9] such an example is

presented. The example presented there is {5,6,6,7,15} for the frequencies of symbols

A, B, C, D, E. Technically, frequencies are presented in decreasing order, but we

consider them in an increasing order, to be in line with the rest of our paper.

Therefore, a question of interest appears: “What is the simplest example that proves

that HC overperforms SFC?”

In our approach the “simplest” means (in that order):

1. The smallest number of different symbols “N” and

2. The shortest stream length “SSL” (containing N different symbols).

Our approach was a full-search of the search space to find the answer. Certainly, we

have to restrict the frequency of each symbol in a range depending on the maximum

stream length “MSL” considered. Because in SFC the symbols are ordered

increasingly, our main loop looks like (number of symbols not established yet):

for(k1=1;k1<=MSL-(N-1);k1++)

 for(k2=k1;k2<=MSL-(N-2)-k1;k2++)

 for(k3=k2;k3<=MSL-(N-3)-(k1+k2);k3++)

 ...

 {

 evaluate SFC(k1, k2, k3, ...)

 evaluate HC(k1, k2, k3, ...)

 compare results

 }

where the symbols {A, B, C, ...} have the frequencies {k1, k2, k3, ...}.

Surprisingly, the problem is not as trivial as it looks like at first view because of more

decisions that must be taken into consideration in implementation. Implementations

are not fully deterministic (unique) because of the following:

• in HC, when one must choose the minimum 2 values, it is possible to have

more symbols (roots) with the same frequency. Luckily, all the cases generate

results that are equivalent from the compression point of view, so this is not a

significant problem. But…

• in SFC, when one must divide the set in 2 subsets, it is possible to have two

“division points” that give the same absolute difference. Unfortunately, the

results for both cases are not always the same from the compression point of

view, so they must be evaluated independently. When such a situation appears

several times in a coding there are many versions of SFC that must be

evaluated, to get a trustworthy result.

When we have the {2,3,4,5} (sub)set to be divided as in SFC we have two options:

7

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

 A B C D A B C D

frequencies 2 3 4 5 2 3 4 5

coding “0” “1” “0” “1”

 left cutting (L) right cutting (R)

We label the two decisions L and R. But, as we go further with divisions (in a general

case), we can have other divisions to be decided, so a final SFC case could be labeled

with a string of L and R, according to the decisions that must be taken (in succession)

for that specific case. More details and examples will be given in the next section.

5. Experimental results and interpretation

To determine the minimum value for N we have noticed that:

• For N=3 it is easy to prove that both SFC and HC will always obtain the same

performance, codes having the length 2, 2 and 1 bits (for symbols in ascending

order of frequency).

• For N=4 we obtain by simulation that there is no case where HC overperforms

SFC (for MSL=100).

• For N=5 it is obvious that such a case exists (cited in section 4), so we focus on

finding the shortest stream length for N=5.

When performing the full-search of the search space we have considered maximum

stream length MSL=100.

To evaluate the result of HC and SFC we have used as criteria the total number of bits

generated when coding the data stream with the codes obtained (as exemplified in

chapters 2 and 3). Certainly, the average code length can be used but we consider that

working with integer is simpler and also proves that the global advantage is very

small (usually a single bit).

According to our approach for scanning the search space we test all possibilities in the

following order:

{1,1,1,1,1},{1,1,1,1,2},...,{1,1,1,1,96},

{1,1,1,2,2},{1,1,1,2,3},...,{1,1,1,2,95},

{1,1,1,3,3},...,

...,

{20,20,20,20,20}

The total number of cases obtained is 757566. From these cases some of them must be

analyzed in more variants, because of different possible cuttings for SFC. The

obtained distribution is presented in Table 1.

An interesting situation are the 12 cases with 5 variants (described in Table 1). In fact,

all are the same case {1,1,1,2,3} but multiplied with 1, 2, 3, . . ., 12 respectively.

8

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

Table 1. Number of variants distribution

Variants
Number

of cases
Percentage Cuttings

 Number of cases

with variants

With no variants 714942 94.3736% 714942

With 2 variants 41404 5.4654% L,R 82808

With 3 variants 1130 0.1492% L,RL,RR and LL,LR,R 3390

With 4 variants 78 0.0103% LL,LR,RL,RR 312

With 5 variants 12 0.0016% LL,LR,RL,RRL,RRR 60

Total 757566 100.0000% 801512

The answer to the main question (“What is the simplest example where HC

overperforms SFC?”) depends on what other restrictions we impose. Therefore:

• If we accept to select a specific cutting the simplest example is:

{1,1,1,1,3}+LL SFC=16 bits HC=15 bits

{1,1,1,1,3}+LR SFC=16 bits HC=15 bits

corresponding to a stream length of 7 symbols. Here we have also the cutting:

{1,1,1,1,3}+R SFC=15 bits HC=15 bits

where SFC and HC give the same result (Fig. 3).

The total number of examples where HC overperforms SFC is 6349, out of 801512

(0.79%).

• If we accept only deterministic (unique) cuttings (variants don’t exist) the

simplest example is:

{2,3,3,3,7} SFC=41 bits HC=40 bits

corresponding to a stream length of 18 symbols. In that case the symbols B, C and D

can be interchanged, so, technically, one can still get different codes.

With the current restriction the total number of examples where HC overperforms

SFC is 5884, out of 714942 (0.82%).

Figure 3. The {1,1,1,1,3} SFC case

9

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2022 * Vol. XII, no. 2

© 2022 Lucian Blaga University of Sibiu

• If we additionally accept only different frequencies for symbols (codes become

technically unique) the simplest example is:

{4,5,6,7,14} SFC=81 bits HC=80 bits

corresponding to a stream length of 36 symbols.

With the current restrictions the total number of examples where HC overperforms

SFC is 1832, out of 463581 (0.39%).

6. Conclusions and future work

Even if SFC and HC are classic and well-known algorithms, the answer to the

question: “What is the simplest example that proves HC overperforms SFC?” is still

of interest. The problem is not as trivial as it looks like at first view because of several

decisions that must be considered.

According to our experiments the simplest solution is:

{1,1,1,1,3} when we accept to select a specific cutting (LL or LR).

{2,3,3,3,7} when we accept only deterministic (unique) cuttings.

{4,5,6,7,14} when we accept only deterministic (unique) cuttings and only

different frequencies for symbols.

In our search space (N=5, MSL=100) the number of examples where HC

overperforms SFC is very small (less than 1%).

Certainly, further research can be done, especially regarding:

• To prove also theoretically that for 4 symbols there is no case where HC

overperforms SFC.

• To verify if, for 6 or more symbols, solutions with smaller stream length exist.

References

[1] Shannon, C. E. A mathematical theory of communication, The Bell System Technical Journal,

Volume: 27, Issue: 3, page 379 – 423, October 1948

[2] Fano, R. M. The transmission of information, Research Laboratory of Electronics, Mass. Inst.

of Techn. (MIT), Technical Report No. 65, Mar. 17, 1949

[3] Huffman, D. A. A method for the construction of minimum-redundancy codes, Proceedings of

the IRE, vol. 40, no. 9, pp. 1098–1101, Sept. 1952

[4] Viraktamath, S. V., Koti, M. V., Bamagod, M. M. Performance analysis of source coding

techniques, 2017 International Conference on Computing Methodologies and Communication

(ICCMC), pp. 689-692, 2017

[5] Krajči S., Liu, C. -F., Mikeš, L., Moser, S.M. Performance analysis of Fano coding, 2015 IEEE

International Symposium on Information Theory (ISIT), pp. 1746-1750, 2015

[6] Sayood K. Introduction to Data Compression, Morgan Kaufmann, ISBN 0128094745, 2017

[7] https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.9.TXT

[8] https://en.wikipedia.org/wiki/Huffman_coding#Applications

[9] https://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding

10

https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.3.9.TXT
https://en.wikipedia.org/wiki/Huffman_coding#Applications
https://en.wikipedia.org/wiki/Shannon%E2%80%93Fano_coding

