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Abstract 

Shannon-Fano coding (SFC) and Huffman coding (HC) are classic and well-known 

algorithms, but still in use today. The search for the simplest example that proves HC 

overperforms SFC is still of interest. The problem is not as trivial as it looks like at first view 

because of several decisions that must be considered. We perform a full-search of the stream 

data space for a maximum stream length of 100. Depending on additional requests we 

impose, the simplest solution we found is {1,1,1,1,3} when we accept to select a specific 

cutting, {2,3,3,3,7} when we accept only deterministic (unique) cuttings and {4,5,6,7,14} 

when we also ask for different frequencies for symbols as well. 
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1. Introduction  

In our days, of Internet and Big Data, the need for compression is more than obvious. 

The data compression domain started with Claude Shannon’s 1948 paper "A 

Mathematical Theory of Communication" [1], where he also proposed the (Shannon) 

entropy concept. He also proves, in his famous source coding theorem, that entropy 

represents an absolute mathematical limit on the performance of lossless data 

compression methods.  

 

Until 1952 Shannon [1], Fano [2] and Huffman [3] proposed coding methods to 

(more) efficiently code symbols based on their probabilities. It was proven that the 

Huffman method is optimal for symbol-by-symbol coding methods [3]. But, for most 

simple examples, all the methods produce same results… 

 

For binary coding (i.e., the alphabet of the code is binary) the entropy is maximized 

for equal (0.5-0.5) probability of code symbols, a result that was at the core of the 

proposed coding methods. 
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From the point of view of the way the statistic source model changes in time while 

coding (static, semistatic or dynamic), all the methods described above fall in the 

semistatic case: first we have to evaluate the probabilities (frequencies), then build the 

model (codes), and finally use the model unchanged for coding. 

 

Although classic, the presented algorithms are still of interest, mainly as entropy 

coders in more advanced coding schemes ([7],[8]), but also in research ([4]). 

2. Shannon-Fano coding 

In [5] Krejči et. all explain: “Around 1948, both Claude E. Shannon [1] and Robert M. 

Fano [2] independently proposed two different source coding algorithms for an 

efficient description of a discrete memoryless source. Unfortunately, in spite of being 

different, both schemes became known under the same name Shannon–Fano coding. 

There are several reasons for this mixup. For one thing, in the discussion of his coding 

scheme, Shannon mentions Fano’s scheme and calls it “substantially the same” [1, p. 

17]. For another, both Shannon’s and Fano’s coding schemes are similar in the sense 

that they both are efficient, but suboptimal prefix-free coding schemes with a similar 

performance.” 

 

Shannon's method starts by deciding the lengths of all the codewords based on the 
⌈−𝑙𝑜𝑔2𝑝𝑖⌉ formula, and then select prefix codes having lengths accordingly. Fano’s 

method is based on recursively dividing the sorted set of symbols in subsets. 

 

We will further consider, as Shannon-Fano Coding (SFC), the Fano’s 

implementation, because it is, in our days, more popular by far and, as stated in [5], 

“Fano coding — while still suboptimal — usually performs slightly better than 

Shannon coding”. 

 

Shannon describes in [1] the method of Fano as follows: “His method is to arrange the 

messages of length N in order of decreasing probability. Divide this series into two 

groups of as nearly equal probability as possible. If the message is in the first group its 

first binary digit will be 0, otherwise 1. The groups are similarly divided into subsets 

of nearly equal probability and the particular subset determines the second binary 

digit. This process is continued until each subset contains only one message”. 

 

We will follow the classical implementation that follows the description above and, as 

usual, we will use a recursive approach for the two resulting subsets. For each 

prospective position for cutting (division) we compute the left sum and the right sum 

and select the cutting point according to the minimum absolute difference of that 

sums. 

 

The approach is a top-to-bottom approach, the corresponding tree being built from 

root to leaves. 

 

We consider the ascending order for sorting because, by using that order, we only 

exchange “0” and “1” in codes (performance remains the same), but the resulting 
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codes looks more like the ones generated by HC. 

 

An example of applying the SFC on an input consisting of 1 A, 2 B’s, 3 C’s, 4 D’s 

and 5 E’s is presented in Fig. 1. The resulting codes are: 

 

A=”000”, B=”001”, C=”01”, D=”10” and E=”11” 

 

The total number of bits generated by coding is: 

 

1*3+2*3+3*2+4*2+5*2 = 33 bits. 

3. Huffman coding 

In 1952 David A. Huffman, a student of Robert Fano, proposed "A Method for the 

Construction of Minimum-Redundancy Codes" [3]. 

 

Huffman coding (HC) method is briefly described as follows: 

• Create a list containing nodes for each symbol (and its frequency). The list 

is sorted in ascending order of the frequencies. 

• While the list contains more than one node: 

• Remove the first two nodes (i.e., with minimum frequencies) from the 

list. 

• Insert a new node having the two removed nodes as left child and 

right child and the frequency the sum of child frequencies. 

 

At the end the last node from the list is the root of the coding tree.  The code of 

each symbol is given by the path from root to leaf adding a “0” for going to the 

left child and “1” for going to the right child. 

 

Figure 1. The {1,2,3,4,5} Shannon-Fano Coding (SFC) example 
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The approach is a bottom-to-top approach, the corresponding tree being built from 

leaves to root. 

 

The presented approach falls in the semistatic modelling case but is well-known 

(erroneously) as “Static Huffman”, probably as opposite to the Dynamic Huffman 

method (which uses a true dynamic modelling, [6]). 

 

An example of applying the HC on the same input consisting of 1 A, 2 B’s, 3 C’s, 4 

D’s and 5 E’s is presented in Fig. 2. The resulting codes are: 

 

A=”000”, B=”001”, C=”01”, D=”10” and E=”11” (same as SFC). 

 

The total number of bits generated by coding is: 

 

1*3+2*3+3*2+4*2+5*2 = 33 bits (same as SFC). 

Figure 2. The {1,2,3,4,5} Huffman Coding (HC) example 
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4. The research question and approach 

As we can notice from the two previous examples, in simple cases SFC and HC give 

the same results (and performance). The general (theoretical) statement ([6]) is that 

HC overperforms SFC but without given examples. In [9] such an example is 

presented. The example presented there is {5,6,6,7,15} for the frequencies of symbols 

A, B, C, D, E. Technically, frequencies are presented in decreasing order, but we 

consider them in an increasing order, to be in line with the rest of our paper. 

 

Therefore, a question of interest appears: “What is the simplest example that proves 

that HC overperforms SFC?” 

 

In our approach the “simplest” means (in that order): 

1. The smallest number of different symbols “N” and 

2. The shortest stream length “SSL” (containing N different symbols). 

 

Our approach was a full-search of the search space to find the answer. Certainly, we 

have to restrict the frequency of each symbol in a range depending on the maximum 

stream length “MSL” considered. Because in SFC the symbols are ordered 

increasingly, our main loop looks like (number of symbols not established yet): 

 
for(k1=1;k1<=MSL-(N-1);k1++) 

  for(k2=k1;k2<=MSL-(N-2)-k1;k2++) 

    for(k3=k2;k3<=MSL-(N-3)-(k1+k2);k3++) 

      ... 

        { 

        evaluate SFC(k1, k2, k3, ...) 

        evaluate HC( k1, k2, k3, ...) 

        compare results 

        } 

 

where the symbols {A, B, C, ...} have the frequencies {k1, k2, k3, ...}. 

 

Surprisingly, the problem is not as trivial as it looks like at first view because of more 

decisions that must be taken into consideration in implementation. Implementations 

are not fully deterministic (unique) because of the following: 

• in HC, when one must choose the minimum 2 values, it is possible to have 

more symbols (roots) with the same frequency. Luckily, all the cases generate 

results that are equivalent from the compression point of view, so this is not a 

significant problem. But… 

• in SFC, when one must divide the set in 2 subsets, it is possible to have two 

“division points” that give the same absolute difference. Unfortunately, the 

results for both cases are not always the same from the compression point of 

view, so they must be evaluated independently. When such a situation appears 

several times in a coding there are many versions of SFC that must be 

evaluated, to get a trustworthy result. 

 

When we have the {2,3,4,5} (sub)set to be divided as in SFC we have two options: 
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 A B C D  A B C D 

frequencies 2 3 4 5  2 3 4 5 

coding “0” “1”  “0” “1” 

 . . . . . .  . . .  

 left cutting (L)  right cutting (R) 

We label the two decisions L and R. But, as we go further with divisions (in a general 

case), we can have other divisions to be decided, so a final SFC case could be labeled 

with a string of L and R, according to the decisions that must be taken (in succession) 

for that specific case. More details and examples will be given in the next section. 

5. Experimental results and interpretation 

To determine the minimum value for N we have noticed that: 

• For N=3 it is easy to prove that both SFC and HC will always obtain the same 

performance, codes having the length 2, 2 and 1 bits (for symbols in ascending 

order of frequency). 

• For N=4 we obtain by simulation that there is no case where HC overperforms 

SFC (for MSL=100). 

• For N=5 it is obvious that such a case exists (cited in section 4), so we focus on 

finding the shortest stream length for N=5. 

 

When performing the full-search of the search space we have considered maximum 

stream length MSL=100. 

 

To evaluate the result of HC and SFC we have used as criteria the total number of bits 

generated when coding the data stream with the codes obtained (as exemplified in 

chapters 2 and 3). Certainly, the average code length can be used but we consider that 

working with integer is simpler and also proves that the global advantage is very 

small (usually a single bit). 

 

According to our approach for scanning the search space we test all possibilities in the 

following order: 
 

{1,1,1,1,1},{1,1,1,1,2},...,{1,1,1,1,96}, 

{1,1,1,2,2},{1,1,1,2,3},...,{1,1,1,2,95}, 

{1,1,1,3,3},..., 

..., 

{20,20,20,20,20} 

 

The total number of cases obtained is 757566. From these cases some of them must be 

analyzed in more variants, because of different possible cuttings for SFC. The 

obtained distribution is presented in Table 1. 

 

An interesting situation are the 12 cases with 5 variants (described in Table 1). In fact, 

all are the same case {1,1,1,2,3} but multiplied with 1, 2, 3, . . ., 12 respectively. 
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Table 1. Number of variants distribution 

Variants 
Number 

of cases 
Percentage Cuttings 

 Number of cases 

with variants 

With no variants 714942 94.3736%   714942 

With 2 variants 41404 5.4654% L,R  82808 

With 3 variants 1130 0.1492% L,RL,RR and LL,LR,R  3390 

With 4 variants 78 0.0103% LL,LR,RL,RR  312 

With 5 variants 12 0.0016% LL,LR,RL,RRL,RRR  60 

Total 757566 100.0000%   801512 

 

The answer to the main question (“What is the simplest example where HC 

overperforms SFC?”) depends on what other restrictions we impose. Therefore: 

 

• If we accept to select a specific cutting the simplest example is: 

 

{1,1,1,1,3}+LL SFC=16 bits HC=15 bits 

{1,1,1,1,3}+LR SFC=16 bits HC=15 bits 

 

corresponding to a stream length of 7 symbols. Here we have also the cutting: 

 

{1,1,1,1,3}+R SFC=15 bits HC=15 bits 

 

where SFC and HC give the same result (Fig. 3). 

 

The total number of examples where HC overperforms SFC is 6349, out of 801512 

(0.79%). 

 

• If we accept only deterministic (unique) cuttings (variants don’t exist) the 

simplest example is: 

 

{2,3,3,3,7} SFC=41 bits HC=40 bits 

 

corresponding to a stream length of 18 symbols. In that case the symbols B, C and D 

can be interchanged, so, technically, one can still get different codes. 

 

With the current restriction the total number of examples where HC overperforms 

SFC is 5884, out of 714942 (0.82%). 

 

Figure 3. The {1,1,1,1,3} SFC case 
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• If we additionally accept only different frequencies for symbols (codes become 

technically unique) the simplest example is: 

 

{4,5,6,7,14} SFC=81 bits HC=80 bits 

 

corresponding to a stream length of 36 symbols. 

 

With the current restrictions the total number of examples where HC overperforms 

SFC is 1832, out of 463581 (0.39%). 

6. Conclusions and future work 

Even if SFC and HC are classic and well-known algorithms, the answer to the 

question: “What is the simplest example that proves HC overperforms SFC?” is still 

of interest. The problem is not as trivial as it looks like at first view because of several 

decisions that must be considered. 

 

According to our experiments the simplest solution is: 

{1,1,1,1,3}  when we accept to select a specific cutting (LL or LR). 

{2,3,3,3,7}  when we accept only deterministic (unique) cuttings. 

{4,5,6,7,14} when we accept only deterministic (unique) cuttings and only 

different frequencies for symbols. 

 

In our search space (N=5, MSL=100) the number of examples where HC 

overperforms SFC is very small (less than 1%). 

 

Certainly, further research can be done, especially regarding: 

• To prove also theoretically that for 4 symbols there is no case where HC 

overperforms SFC. 

• To verify if, for 6 or more symbols, solutions with smaller stream length exist. 
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