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Abstract 

This paper presents a design method and tool developed to support the skill forming activities 

in the DigiFoF network (https://www.digifof.eu/).  The focus is on training of manufacturing 

system design skills both as HEI education and vocational training, but preliminary design of 
new manufacturing systems is also supported (e.g in the development of small business 

process scenarios).  

We proposed a model-based methodology for solving of the manufacturing system design 

problems The methodology and the supporting tool are centred around a less abstract Domain-

Specific Modelling Language (DSML). The language is easy to learn due to its few components.  

A modelling and simulation environment named Digital Production Planner Tool (DPPT) was 

generated from the metamodel of the DSML. The degree of abstraction used by this tool 

corresponds well to the intended use in training and preliminary design. 

Our method incorporates by design the possibility to impose constraints at the modelling 
language level to limit the modelling space to feasible/possible solutions. The resulting tool 

enforces these constraints in the use and supports the development of feasible designs even by 

inexperienced designers. 

The access to the conceptual model allows the translation of the model to other modelling 

language like Petri net. This extends the support for the design methodology. 

The whitepaper presents a use case for the developed method and tool: the design of a 

chocolate manufacturing line. 

Keywords: ADOxx modelling, Factory of the Future, Internet of Things, 

  

1 Introduction 

A study based on the answers of 108 employees (of different job categories) from 6 
European countries (Romania, Poland, Italy, France, Germany, and Finland), 67% of 
them working in medium, large and very large enterprises, analyzed the design skills 
required by employees, how firms provide training for their employees, which is the 
level of innovation in the industry [DigiFoF2019]. 
The results of the research confirm the significant role of possessing and building digital 
designing knowledge and skills among present and potential employees of 
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manufacturing companies. The level of competence in the analyzed group of companies 
is not satisfactory in this field. The following is a summary of the main findings from the 
survey: 

• importance of digital design skills in companies. 
• not sufficient level of companies’ ability in trainings for FoF. 
• knowledge gap exists in the scope of advanced methods and tools supporting 

the development of innovative products and services. 
• respondents recognize the need to improve them mainly through organization 

and participation in additional internal trainings. 
• enterprises are interested in process modelling and it is perceived as 

fundamental for the optimization and redesigning processes in enterprises. 
• a lack of skills or a lack of access to necessary infrastructure supporting process 

modelling and model-based designing for cyber-physical systems. 
• lack of practical experience with enterprise architecture management, business 

modelling and digital mock-ups. 
• low/moderate level of process digitalization in enterprises. 
• low or moderate levels of process automation and control. 

Due to the identified lack of experience and knowledge in this area, training on digital 
designing should be conducted systematically and adapted to the conditions of business 
operations. 
To improve the digital design skills, the DIGIFOF project has developed a network of 
training environments where HEIs, enterprises and training institutions come together 
to develop skill profiles, training concepts as well as materials for design aspects of the 
Factory of the Future (FoF). This structure foster knowledge transfer between industry 
and academia, aiming to provide educational and experimental OMiLAB4FoF 
laboratories, where FoF-aspects can be taught practically or experimented with.  
In this skill development environment, design is understood as the process of novel 
business models creation and assessment within an experimentation space. 
[Karagiannis2020] 

This whitepaper presents a design method and tool developed to support the skill 
forming activities in the DigiFoF network.  The focus is on training of manufacturing 
system design skills both as HEI education and vocational training, but preliminary 
design of new manufacturing systems is also supported (e.g., in the development of 
small business process scenarios).  

1.1 Intended scope 

Only flexible manufacturing systems (FMS) can respond to the rapid changes of a 
demanding market. Such manufacturing systems can produce multiple types of 
products by providing the possibilities of reconfiguring. This reconfiguration can be 
performed rapidly to respond to the dynamic of the market.  
An FMS consist of: 

• a set of workstations capable of the automatic execution of large sets of 
operations. This defines the machine flexibility and helps the FMS to cope with 
large-scale changes in volume, capacity, or capability demands. 
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• a material handling system flexible conveyor, automated guided vehicles (AGV) 
and loading-unloading robots - routing flexibility changed to produce new 
product types, change the order of operations. 

• a complex command and control system - orchestrates the cooperation. 
From a design perspective a description of the FMS should also include, in an 
abstracted form the knowledge about its capabilities. This knowledge is the answer to 
some questions that can be reformulated in requirements for a design problem: What 
raw material it can intake? What transformation it can apply to these materials? At 
which parameters? What can it produce and with wat yield? This knowledge is a very 
important support for the design approach. 

1.2 An illustrative example - a chocolate production line 

A manufacturing line that produces chocolate truffles and packages them in a 
combination of aluminium foil bags and cardboard boxes is depicted in figure 1 and 
presented in the following section to help in understanding the concepts that will be 
presented. This case comes from a manufacturer of confectionery products which has a 
high mix low volume manufacturing process with a variable demand in assortment and 
volume, relatively short production cycle (1 day) and a just-in-time producing policy. 
The variability is given by both the confectionery assortment and the packaging type: 

• an AGV transports the buckets with chocolate ganache mass from the storage 
area to the loading buffer of the truffle forming machine; 

• an AGV transports the cardboard packaging material from the storage area to 
the loading buffer of the box forming machine; 

• On the first line, the chocolate ganache mass is fed from the loading buffer in 
the tank of the truffle forming machine; inside the machine the chocolate is 
melted and chocolate truffles are formed. The truffles are loaded on a transport 
belt which functions as a buffer for the transport line with freezing areas. The 
chocolate truffles are transferred on the transport line where they are cooled to 
solidify and preserve the shape and then loaded in the buffer of the aluminium 

 

Fig.1  General view of the chocolate  manufacturing line  
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foil packaging machine. Two processes occur here: the formation of the bags 
from the aluminium foil taken from a roll and the filling of the aluminum bags 
with chocolate truffles. The resulted aluminum bags filled with chocolate truffles 
are buffered in a dispenser; 

• On the second line, cardboard packaging material from the loading buffer, is 
transformed by the box forming machine in cubic cardboard boxes. The boxes 
are loaded in the machine output buffer; 

• On the assembly line, a robotic arm transfers alternatively the aluminium bags 
and the cardboard boxes on the feeding transport belts which function as a 
buffer for the final packaging machine. The packaging machine has a robotic 
arm with flex gripper that introduces the aluminum bags with truffles in the 
cardboard boxes. The final product - cardboard boxes having aluminum bags 
with truffles - is discharged in a storage buffer from which it is then later 
transported to the finite product storage area. 

1.3 Design problem 

In this context a design problem consists in finding the right and optimal configuration 
of such a system that can respond to a customer order. A customer order specifies an 
assortment of products characterized by type of material and quantity that must be 
produced under some time and cost constraints. It can be a design-from-scratch 
problem for a new facility or a redesign/reconfiguring problem for an existing facility. 
A solution to a design problem has two aspects: 

• one structural 
o the components of the manufacturing line 
o their spatial placing 
o their fixed and dynamic connections 

• one organizational 
o the order and the timing in which the processed parts are entering each 

component of the production line. 
Due to the complexity of this activity and due to the digital nature of the control and command 
system the design must be also digitalized or supported by digital tools. 

1.4 Requirements for the design tool 

We intend to design a methodology and a tool that is not only able to generate a 
solution for the design problem – a system that corresponds to the user needs 
expressed in the design requirements. It also should emphases the capabilities of the 
designed system in manner that allows an innovative use (transformative, disruptive, 
new business model), The assessment of this capabilities should be possible already 
during design. This requires Model Driven Engineering as development methodology. 
Challenge: how to design a system that a) corresponds to the user needs, b) reflects 
the capabilities in an innovative manner (transformative, disruptive, new business 
model) and c) provides assessments results already during design 
The design activity should be divided in three sub-activities presented below (A1-A3) 
[Mironescu2020]. 
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1.4.1 A1. Layout design  

In which the number, types, connections, and placement of the components of the line 
are established. In this phase the designer selects from a toolbox the elements that 
compose the line. He follows the order of operations (that transform the raw materials 
in final products) and the organization of the production line: flow shop, job shop, open 
shop etc. He connects the components with lines, representing each the flow of a 
specific material between 2 components. 
In this phase the designer evaluates the general capabilities of the resulting solution to 
assess how it can respond to some general constraints of the problem. Normally this 
can be summarized by following questions (in the order in which they are asked): 

1. what is the product assortment(s) that the designed line can produce? 
2. what is the maximum throughput of the designed line? 
3. what is the minimum throughput of the designed line? 
4. what are the limiting aspects of the design (critical path, bottleneck components, 

critical failure points etc.)? 
This can be done through structural analysis based mainly on graph theory. So, in this 
phase the designer generates the graph representation of the solution and uses 
mathematical tools and algorithms to evaluate the solution. The model-based design 
approach has the advantage of allowing model transformation so that various 
representation can be obtained. This representation is more suited (due to established 
tools or methods) for the assessment of certain aspects of the design or to support the 
other activities of the design method. 
As the Petri nets are intensely used in practice also for the following design activities 
(and are a level of abstraction lower as graphs) it is common practice to transform the 
model of the production line in an equivalent Petri net model. The designer then uses 
Petri net analysis to answer the questions from above. 
In this phase multiple solutions are designed and evaluated. The ones that are closer to 

the requirements specified by the design problem (What is the meaning of best?) are 
selected and subsequently improved until a corresponding solution is found for the 
basic layout. In this phase the best solution is the solution that has the wider product 
assortment and the greater flexibility in production volume and type. The chosen 
solution is a layout model that will be used in subsequent activities. 

1.4.2 A2. Operation planning/Scheduling 

At this stage the designer solves the following optimization problem for the production 
line designed in A1: For a given number of jobs each consisting of a number of product 
units find a job execution order that minimize one or more aspects of the 
manufacturing process (for example completion time, and/or delays (due time – job 
completion time) and/or number of delayed jobs. 
One of the following methods is employed - depending on the algorithmic complexity of 
the problem: 

A. he derives a mathematical representation of the model – often a matrix 
representation generated from the graph of the model – suitable for an 
analytical algorithm (e.g mathematical programming) that gives an exact 
solution of the optimization problems where this is possible. 
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B. he derives an encoding for the solutions suitable for use with an evolutionary 
algorithm and use the model to evaluate the fitness of the solution through 
simulation using the model developed in the A1 stage. 

C. he uses a gradient based search algorithm using the model from A1 for 
evaluating the search direction. 

D. he explores directly through simulation the solution space; he uses both batch 
and interactive, step by step simulation. He can enhance the realism of the 
simulation by including cyber physical systems in the simulation – scale model or 
full-scale robotic arms or robotic vehicles 

The result of this activity is an optimal or near optimal schedule or a Pareto set of 
schedules or a near Pareto set of schedules. 

1.4.3 A3. Control system design 

At this stage the designer develops the control system that steers the line to perform 
the operations corresponding to a given schedule without user intervention. The control 
system should ensure that the jobs are executed in the prescribed order and with the 
prescribed timing and that the concurrent processes are coordinated so that no 
undesired events occur. The model of the plant is completed with the model of the 
control system so that the assessment of the control logic can be performed through 
analysis and simulation. 
From the layout design stage some of the components have information input ports on 
which they receive commands and information output ports on which they expose 
attributes values. The designer introduces in the model command elements and 
connects them with the components through the information input and output ports. 
Then it defines the control algorithm that specifies which command should send the 
control on the output port for a specific combination of values on the input ports. For 
the algorithm description a graphical language is used. Usually, Petri net is used as 
language, as a well-established methodology exists for the (automatic) synthesis of the 
control system based on the Petri net model of the plant. The functioning of the system 
is then tested through batch and interactive step by step simulation. 
Figure 2 presents the iterative design process. The starting information used in each 
activity is depicted in the rectangle. The small circle depicts the digital artifact 
containing the solution of the sub problem solved by the activity. In the big circle a real 
or virtual realization of the solution is represented.  
For the A1 activity, de list of available machines (M) and their capabilities, described 
through the list of operations (O), are used to obtain a MLMP model of the 
manufacturing line. This model contains the necessary information type of machines 
and connectivity to assemble a real or virtual manufacturing line from the machines 
corresponding to the model components. 
The MLMP model is used as the domain for the scheduling sub problem in the A2 
activity. The machine and operation lists are used together with the job list J and the 
timing information to construct the disjunctive graph which is a usual form of 
representing the Job Shop Process. Every   possible schedule can be derived from this 
graph through simplification and it is a representation used by optimizing tools. This 
makes it suitable as the digital artifact for this activity. From this representation a Gant 
chart used in practice for expressing the work schedule is generated. 
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Finally, the constraint and interdependencies imposed by the schedule (e.g.  if then 
rules depicted in the figure) are the starting point for the synthesis of command-and-
control system in activity A3. The Petri net of the plant is enhanced with the Petri net 
representation of the control system and is used as the digital artefact of this activity. 
This can be used for the connection, configuration and programming of a PLC based 
control system. 
When starting a solution from scratch (new production line) the order in which these 
activities are performed in the first cycle is A1, A2, A3 (indicated through the exterior 
arrows). After the first iteration every improvement can imply design iteration on a 
previous activity and then design iteration on the other activities (indicated through the 
exterior arrows).  
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Fig. 2   Iterative design activity 
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2 A1 The Digital Production Planner 

The core of our support environment for the design method is the Digital Production 
Planner which supports mainly the sub activity A1. The support for modelling and 
simulating the temporal dimension is not supported in both the Digital Production 
Planner and ADOxx based Petri net tools. This dimension is especially important for 
activity A2 but also for activity A3 so that these activities must be supported by 
external tools. We intend to implicate the ADOxx community in solving this issue so 
that a better alignment of ADOxx based tools to the methodology can be achieved. 

2.1 Methodology 

The purpose of this research is to define important steps in the process of optimal 
development of a tool dedicated to Digital Production Planner, specific to the 
domain. The process of developing such a tool includes two important steps, namely 
the specification of the modelling method concept specific to the modelling domain 
in question and the implementation of this modelling method in a modelling tool. 
The concept of modelling method specified in this project was called Modelling 
Method for Digital Production Planner (MM-DPP). The modelling tool that implements 
the concept MM-DPP, we called it the Digital Production Planner Tool (DPPT) and we 
implemented it on the ADOxx metamodeling platform. The main component of this 
tool is the Modelling Language for Manufacturing Processes (MLMP), which we will 
present in the following. 
We will define a Modelling Language for Manufacturing Processes (MLMP) designed 
specifically for specifying and optimizing manufacturing processes. MLMP is a 
language for modelling manufacturing processes to represent the logical and 
functional dependencies of the activities of a manufacturing process. The objective 
of the MLMP language is the conceptual integration of the functional perspective of 
the manufacturing processes in order to optimize them. The language is addressed 
to the Digital Production Planner (DPP). 

2.2 Formalizing the concept of modelling method 

We understand a manufacturing process as a behavior model of a dynamic system 
at a certain level of abstraction.  The behavior of the system is given by several 
processes that are executed simultaneously (parallel and distributed), where these 
processes exchange data to influence each other's evolution. 
The theoretical mechanism most used for modeling processes is the transition 
system. Transition systems are mechanisms with a well-defined syntax and 
semantics but become impossible to use in competing systems. For this reason, a lot 
of other higher-level languages such as Petri Nets, BPMN, EPC, UML, etc. are used in 
practice. These models describe the processes in terms of activities ordered through 
casual dependencies [Craciunean2018] [Craciunean2019]. A mechanism that can be 
the base of such a metamodel is the concept of modeling method. 
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The variety of manufacturing processes, often, makes it necessary to implement 
specific modelling tools. The first phase of this process is the specification and 
implementation of the Modelling Method over a metamodeling platform. 
The language specific to a Modelling Method [Karagiannis2002] relies heavily on 
graphic elements. To represent the properties of the models in the form of 
specifications, it is important to build the most appropriate language to enable these 
specifications to be written in a very clear and simple form. 
The graphical representation of the formal model provides means for user 
interaction and model value functionality to process the representation (incl. 
transformation). 
A modeling method however is a concept [Karagiannis2002], [Bork2019] that 
consists of two components: (1) a modeling technique, which is divided in a 
modeling language and a modeling procedure, and (2) mechanisms & algorithms 
working on the models described by a modeling language. The modeling language 
contains the elements with which a model can be described. The modeling 
procedure describes the steps applying the modeling language to create results, i.e., 
models. Algorithms and mechanisms provide “functionality to use and evaluate” 
models described by a modeling language. Combining these functionalities enables 
the structural analysis, as well as simulation of models. 
Essentially, a modeling language relies heavily on the graphical notation. The 
modeling procedure describes the steps to be followed in applying the modeling 
language to create results, i.e. patterns. 
Algorithms and mechanisms provide functionality for the use and evaluation of 
models described by a modeling language. This functionality is given by the 
processes that act on models to change their state. Combining these functionalities 
allows structural analysis as well as the simulation of the models. 
The essential part of a Modeling Method is the modeling language. In our approach, 
this language is a Domain-Specific Language (DSL). A DSL [Fowler2010] 
[Karagiannis2016] is a programming language that offers increased facilities for 
application development in a domain. The point is that the concepts and notation of 
such language are as close as possible to what we have in mind when thinking about 
a solution in this area. A Domain-Specific Modeling Language (DSML) is a DSL 
adapted to specify models. 
In the Model Driven Engineering (MDE) conception, the development of DSMLs is an 
integral part of the software modeling process. These DSMLs are, in general, graphic 
languages adapted for specifying the models in a domain. Designing a new DSML 
involves first interpreting the nodes and edges of a graph and then imposing 
domain-specific constraints and assigning suggestive visual symbols to represent the 
concepts involved in the models specific to the language in question. 
A category [Barr2012] as well as a model is a mixture of graphical information and 
algebraic operations. Therefore, category language seems to be the most general to 
describe the models [Milner2009]. It can provide us with the features that must 
characterize both the domain specific language (DSL) and the Modelling Method 
concept. 
The difficulty in designing a FMS comes from its inherent complexity enhanced by 
the introduction of the Industry 4.0 architecture – multiple actors interacting on 
multiple levels without a defined hierarchy (which was traditionally used for tackling 
complexity). The dynamic of the markets reflected in the flexible dimension brings 
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with it the aspect of continuous changing requirements. The continuous 
reconfiguration requested by this flexibility makes the "conceptual model"-awareness 
at run-time mandatory (digital twin). This can be achieved only by shifting the role 
of the modelling in MDE toward knowledge representation. This is done by the Agile 
Modelling Method Engineering (AMME) [Karagiannis2015] for the development 
process is required. By using a metamodeling-based technology we ensure that our 
tool can be easily integrated in N AMME workflow. 

2.3 Defining the Modelling Language for Manufacturing 
Processes 

Specifying a language involves establishing a syntax, which is a possible set of 
syntactic elements accepted in linguistic constructions, establishing a semantic 
domain that gives meaning to those constructions, and mapping syntactic 
constructions to this semantic domain [Bork2020] [Karagiannis2016]. 
Therefore, specifying a language must contain a syntax, a semantic domain, and a 
mapping of syntactic constructions to the semantic domain. 
Although, at the level of language implementation, the first component specified is 
the syntax, in the designer's mind the semantics is what first appears, i.e. real 
concepts that underlie the constructions of the language and what these 
constructions mean. This is, in fact, the mechanism for the development of natural 
language, the significance of a concept first appears and then a syntactic notation is 
found for it, a notation needed in the communication process. 
The semantics of a language is essential because, semantics describe the meaning 
of a language, but computers do not offer any possibility of manipulating semantics 
directly. 
A modeling language must allow both the structure of a model and the behavior of 
the model to be specified. Therefore, such a language should allow both the syntax 
and semantics of the structure of a model to be specified, as well as the syntax and 
semantics of the behavior of that model. 

2.3.1 Static model syntax 

MLMP is a graphical language for describing manufacturing processes at the level of 
manufacturing logic, easy to understand and use. 
Not any graph that has the nodes made of concepts specific to a manufacturing 
process (workstations, transport systems, collection buffers and ports) is a correct 
manufacturing model. For example, the graph must be connected and may not have 
more than one arc between two elements, etc. 
We introduced these constraints at a formal level through the categorical sketch 
mechanism. The categorical sketch that specify the abstract syntax of the modeling 
language is a tuple 𝓢=(𝓖, 𝓒(𝓖)) where 𝓖 is a graph and 𝓒(𝓖) is a set of constraints 

on the classes of objects represented by the graphs nodes [Barr2012] [Diskin2012] 
[Wolter2015]. The graph components will be mapped to the Set category by a 
functor. The Set category is a category that has as objects sets and as arcs functions 
between these sets. Thus, each node of the graph will be transformed, in the Set 
category, into a set of objects of the same type and each arc of the graph will be 
transformed into a function. The constraints defined by a categorical sketch will be 
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imposed on the corresponding sets of objects and functions in the Set category. 
Therefore, when defining the graph of a sketch and the corresponding constraints 
we must bear in mind that they will be mapped into the Set category. Therefore, in 
the graph of the sketch, each atomic concept, from the modeling domain, is 
represented by a node. The arcs of the sketch are called the sketch operators and 
allow the conditions to be imposed on the graph structure of the models. Categorical 
sketches are not designed as a notation, but as a mathematical structure that 
incorporates an exact formal syntax and semantics. 
A static visual model is the image of a sketch 𝓢=(𝓖,𝓒(𝓖)) through a functor in Set 

category. Therefore, we have a class of models Mod(𝓢,Set) specified declaratively by 

a categorical sketch 𝓢. 

Figure 3 presents the categorical sketch for the MLMP constructed around the basic 
concepts (workstations xws, transport systems xts, collection buffers xbf and material 
ports xmp). 

2.3.2 Behavioral syntax of MLMP 

One of the key techniques in MDE for modeling the behavior of a system is the 
transformation of the model. This technique is also successfully used for the 

 

Fig 3 Categorical sketch for the MLMP 
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automation of other model management operations, such as code generation, model 
optimization, translation from one DSML to another, simulation, etc. In the case of 
diagrammatic models, the transformation of the models is based on the 
transformation of graphs, which is a formal approach to structural changes of graphs 
by applying transformation rules [Plump2019] [Plump2010]. A graph rule, also called 
the production p=(L,R), is composed of two graphs; a left graph L, a right graph R 
and a mechanism that specifies the conditions and how to replace L with R. 
Although, in our case, the behavioral model is not based on structural 
transformations of the graph, but on changes of attribute values, we will use graph 
transformations because they provide the necessary context to locate the 
components involved in a transformation and to locate the critical regions that will 
be defined for parallel behavioral transformations. 
The double pushout (DPO) or single pushout (SPO) approaches are transformations 
in successive steps of the left graph to the right graph [Plump2010] [Plump2019] 
[Ehrig2015]. 
We will specify the behavior of the MLMP model, with DPO graph transformations. 
The transformation rules express local changes of the graphs and are therefore very 
suitable to describe the local transformations of the model states, on which the 
description of its behavior is based. A graph transformation rule is a formal concept 
that precisely defines the model's behavior through preconditions, postconditions 
and transformation steps ordered only by the causal dependence of the actions, 
which facilitates the application of independent rules in an arbitrary order. 
In the double-pushout (DPO) variant, a graphical production is denoted p=(L¬K®R) 
and contains three graphs: a left graph L, a right graph R and an interface graph K 
contained both in R, and in L, where the arrows represent two total monomorphisms 
pL:K®L and pR:K®R. In this variant, a production p contains besides graphs L and R 
and a bonding graph K, also two total graphical monomorphisms. 
The application of a production p=(L¬K®R) to a graph G begins with the localization 
of an occurrence of L in G, given by a total match monomorphism m: L®G. Then we 
must construct on a graph D by deleting from G the difference between L and K, 
that is D=G\(L\K). The final graph H is obtained by joining to D the difference 
between R and K, that is H=D+(R\K). In order for D=G\(L\K) to become a graph in 
which all edges have a source and target, a certain bonding condition must be 
fulfilled, which leads to a well-defined graph D. 

2.3.3 Semantics of MLMP Language 

As we have seen, in principle, a static visual model is the image of a sketch 
𝓢=(𝓖,𝓒(𝓖)) through a functor. In order to also define the behavior of a model it is 

necessary that the graph of the sketch be enriched besides the constraints (𝓖) also 

with types, attributes and behavioral rules. 
An important extension of the graph 𝓖 is the introduction of a type of alphabet for 

nodes and a type alphabet for arcs, and assignment of types to each element of it 
[Ehrig2015] [Campbell2018] [Campbell2019]. Thus, it becomes a type of graph. We 
will consider in the following that the name of each type is identified with the name 
of the corresponding element of the sketch. 
Then the typing of a model M: 𝓢®Set is made by a tuple MT=(M;typeM) where typeM 

is a morphism from model M to the type graph 𝓖 thus defined typeM(X)=x where 
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XM(x) and x is a node or arc of the graph 𝓖 of the sketch. Thus, each element of a 
model will have a name and a type. We observe that the metamodel types can be 
similarly defined by a meta-metamodel. 
The states of a model will be defined by the values of some attributes associated 
with the nodes and edges of the graph of the structure of the model as well as the 
structure of the model. The evolution of the model is based on the modification of 
the structure of the model within the limits allowed by the constraints (𝓖) and on the 

modification of the values of the attributes within the limits allowed by their type. 
An attributed graph is a graph extended by attaching attributes to the nodes and 
edges of a graph, so that the nodes and edges can also be characterized by the 
attribute values. These attributes are represented by edges that link the nodes and 
arcs of the sketch graph to the corresponding data domain [Campbell2019]. 
To be able to define the behavior of a model at the metamodel level, we will now 
introduce the notions of signing a behavioral rule and signing a system of behavioral 
rules. 
The signature of a behavioral rule is a tuple s=(LKR,CL,Act,CR) where: 
L, K and R are attributed graphs L,K,RGraph0, ls and rs are graph monomorphisms 

ls,rsGraph1, 

CL=(PL,arL) is a diagram predicate signature such that arL:PL
®AGraph0, which we call 

the precondition signature. 
CR=(PR,arR) is a diagram predicate signature such that arR:PR®AGraph0, which we 
call the postcondition signature. 
Act is an action signature that specifies how to transform the elements of graph L 
which is the domain of action into the components of graph R which composes the 
codomain of the action. 
Act has the shape graph arity a tuple ar=(arL,arR), where arL(Act)=L and arR(Act)=R. 
To simplify the exposure we will sometimes write an action in the form of Act(L;R). 
If we consider that the elements of graph L, the nodes and arcs, are (x1,...,xm) and 
the elements of graph R are (y1,...,ym) then (y1,...,ym):=Act(x1,...,xm) and therefore 
we will denote the graph L with L(x1,...,xm), the graph R with R(y1,...,ym), the graph 
K with K(z1,...,zl) and an action also with Act(x­1,...,xm; y1,...,ym). Most of the times 
in applications Act is a set of operations wi:x1,...,xm®yi, i=1,…,m. 
The dynamic behavior of an MLMP model over time is accomplished by generic 
algorithms that implement the behavioral transformations. The simulation begins by 
initializing the system with data describing its initial state. The dynamics of the 
system are accomplished by the succession of the behavioral transformations 
executed. The semantics of an MLMP defines how process tokens are propagated 
through the arcs and objects of a model. 
In the modeling method concept the simulation of a model is based on mechanisms 
and algorithms that are written in a programming language. The behavior of the 
model is described by rules that specify how expressions are evaluated and 
commands executed. These rules provide an operational semantic that provides a 
language implementation. 
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2.4 Design (modelling) tool for the Factory of the Future 

The modelling tool that implements the concept of modelling method, presented 
above, we called it the Digital Production Planner Tool (DPPT) and we implemented 
it on the ADOxx metamodeling platform. The tool should support the user to find a 
solution to a design problem. A design problem is formulated as an assortment of 
products characterized by the type of material and quantity that must be produced 
under some time and cost constraints. Because the most intuitive form of a model is 
the diagrammatic one, we chose to build a diagrammatic language. 

2.4.1 The MLMP Language 

Diagrammatic models are, generally, graphs with certain constraints on their 
components, in which nodes and arcs are interpreted as a concept in the field of 
modelling [Wolter2015], [Karagiannis2016]. Designing a new visual DSML involves 
defining the syntax and semantics of the modelling domain. Defining the syntax of a 
DSML involves associating atomic concepts in the modelling domain with suggestive 
visual symbols and defining formal rules for composing these atomic concepts into 
complex concepts. Defining the semantics of modelling languages involves defining a 
semantic domain and mapping syntactic constructions to this semantic domain. 
Therefore, the syntax of a language is a way of expressing and manipulating 
semantics. 
The modelling language will have to provide mechanisms for specifying the static 
dimension of a model and the modelling instrument will have to include mechanisms 
and algorithms for simulating the behavioral dimension of the model. Both 
dimensions of a model, the static dimension and the behavioral dimension, are 
characterized by syntax and semantics. The atomic concepts in the specific domain 
of MLMP language modelling - corresponding to the nodes of the categorical sketch 
from Fig 2- are: Buffers, Workstations, Transport Machines and Ports. 
Figure 4 presents the metamodel implemented in ADOxx. The model results from 

 

Fig. 4 The metamodel constructed from the categorical sketch 
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the translation of the categorical sketch (Fig 2) in the corresponding class hierarchy. 
The nodes representing concepts are translated in classes and the arcs in relations 
between the classes. 
In Fig. 5 we have an example of a manufacturing process model specified in terms 
of the MLMP language integrated in the Digital Production Planner Tool 
[DigiFoFD3.4]. The specified model contains: two transporters, namely, a conveyor 
(Conveyor1) and a manipulator (Manipulator1); a workstation (Workstation1) and six 
buffers and all these components are connected via material ports. The conveyor 
transports materials from buffer B1 to buffer B2. The manipulator alternately 
transports materials from buffers B3 and B4 to buffers B5 and B6. The workstation is 
fed from buffer B2, processes these materials and deposits the processing result in 
buffers B3 and B4. 

2.4.2  MLMP Syntax 

In the case of the MLMP language, the behavioral dimension is specified formally, 
syntactically and semantically, at the metamodel level and is included in the 
algorithms and mechanisms component of the modelling method concept 
[DigiFOFD3.3]. 
Defining the syntax of the static dimension of a model involves associating 
suggestive notations to atomic concepts in the specific domain of modelling, which 
will also be the lexical atoms of the MLMP language. Therefore, the atomic concepts 

 

Fig. 5 An example of an MLMP model 
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of the language will be Buffers, Workstations, Transport Machines and Ports, which 
will be represented graphically as the nodes of a graph, and the relations between 
them will be represented by the arcs of the graph. 
Buffers are temporary warehouses in the manufacturing flow and are characterized 
by the type of material they can store, by the maximum number of materials they 
can store and by the amount stored at a time. These features will be syntactically 
denoted by attribute names. Buffers are components that store material without 
transforming it, so it must have all material ports of the same type. The maximum 
buffer capacity is fixed and cannot be extended (constant attribute). Their variable 
attribute is the current content, which can vary between 0 and the maximum 
capacity. The buffer cannot be loaded above the maximum capacity and cannot be 
unloaded if it is empty. Buffers are passive components, they are filled and emptied 
by other components with which they are connected. 
In Fig. 6 we can see the symbolic notation that we attributed to this type of 
component. Attribute names are: Name, MaterialType, Capacity, OccupiedCapacity. 
Workstations are the components that perform the operations of assembling, 
subassemblies or transforming some material entities into other material entities. 
These concepts are components in the manufacturing flow characterized by the 
types and quantities of input material and by the types and quantities of output 
materials for each operation that can be performed in that workstation. 
Workstations are components that transform materials. So, they must have at least 
one input and one output port of different types. They must allow the definition of 
operations that describe how many units of which materials are needed and which 
number of units based on which materials are produced through this operation. 
In Fig. 7 we can see the symbolic notation that we attributed to this type of 
component. Attribute names are: Name, Duration, OperationCode, and a set of 
component records (MaterialType, MaterialAmountIn, MaterialAmountOut). 
Transport machines are components of the manufacturing flow that transport 
material entities between workstations, in principle from one buffer to another. 

 

Fig.7. Workstation notation 

 

 

Fig. 6. Buffer notation 
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These concepts are components in the manufacturing flow characterized by the 
types and quantities of materials that can be transported from one buffer to another. 
Transport machines are components that transfer material without transforming it. 
They only change the position of material from the input buffer to the output buffer. 
So, they will have at least one material input port and output port for each material 
that is transported, and the mass balance must be respected on the same material – 
number of entering units = number of exiting units. 
The conveyers transport only one material, so all ports are of the same type and the 
defining characteristics is the throughput – number of material units transported in 
the time unit. 
The automated guided vehicle (AGV) is practically a mobile buffer. It has all 
attributes and behavior of a buffer, but it can connect and disconnect its ports from 
the corresponding ports of buffers and can move between preprogramed positions.  
Also, it is an “active” component, initiating the loading unloading actions as soon as 
it is docked on buffer. So, all considerations concerning the interaction between 
buffers and components apply here. 
The manipulator is a flexible transporter that can transfer multiple types of materials 
between different in and out ports of the same type.  The most usual example is a 
manipulator that can handle different types of material moving them between 
different sub lines.  There must be at least an in out pair of ports for each material 
type that is handled by the manipulator. At one moment the manipulator works only 
between one pair of ports of the same type. 
In Fig. 8 we can see the symbolic notation that we attributed to the three types of 
conveyors, namely Fig. 8a contains the notation for the conveyor type, Fig. 8b 
contains the notation for the AGV type, and Fig. 8c contains the notation for the 
manipulator type. The attribute names for the conveyor type are: Name, 
MaterialType, CapacityUnit, Capacity, TransportTime, OperationCode, and for the 
manipulator and AGV types there is a simple Name attribute and a set of structured 
records (MaterialType, TransportQuantity, TransportTime, OperationCode). 
Ports are the components in the manufacturing flow that connect the flow of output 

 

        a. Conveyor                                   b. AGV                              c. Manipulator 

Fig.8. Transport machines notations 

 

 

Fig.9. Material port notation 
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material entities from the components with corresponding inputs to other 
components. These concepts are components in the manufacturing flow 
characterized by the types of materials and the direction of entry or exit. In Fig. 9. 
we can see the symbolic notation that we attributed to this type of component. 
Attribute names are: MaterialKind, PortName, PortDirectionType. 
The control elements are components that transfer only information, so that they 
have only information ports - not necessarily all of the same information type. The 
control element is the ideal point for interfacing the model with other modules. The 
control element executes the control algorithm. The program reads feedback 
messages from the process from the input ports or commands from other command 
items.  Depending on the current status and inputs, commands are generated that 
are placed at outputs. 
In Fig. 10 we can see the notations used for the control elements (Fig. 10a) and the 
information ports (Fig. 10b). 
The static dimension of an MLMP model is a graph with nodes of the types described 
above, i.e. Buffers, Workstations, Transport Machines and Ports that are endowed 
with attributes specific to each type. Although the behavioral dimension of a model 
is dependent on the static dimension, it still reflects the running model, i.e. its 
transition from one static instant to another. Therefore, each instant of the static 
dimension represents a state of the model. The transition from one state to another 
will, in our approach, have to be made by a set of behavioral rules that make up the 
behavioral dimension of the model. We defined behavioral syntax at the metamodel 
level by behavioral signatures [DigiFoFD3.3]. 

2.4.3 MLMP Semantics 

The atomic concepts described in section” MLMP Syntax” are in accordance with 
the principles of designing flexible manufacturing systems as structure and 
operations are integrated from a syntactic point of view. They propose structures 
based on autonomous, distributed, cooperative and intelligent components, which 
can be assembled to perform the specific functions of manufacturing processes. The 
manufacturing process specification mechanism is based on the top-down functional 
breakdown of the system into specific components, configurable by attribute values. 
The semantics of the static dimension is characterized by the values of the attributes 
and the graph structure of the model, and is therefore defined by mapping the 
attributes to data domains and the syntactically correct graph structures to known 
structures such as sequential structures, joins, forks, etc. 
The mapping of the attributes to the data domains are presented in Table 1. 

 

                                            a. Control element           b. Information port 

Fig. 10. Control element and information port notation 
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The semantics of the behavioral dimension captures the behavior of the active 
components of the model.  
Considering the formal parameters n1,n2,n3,n4,n5,n6,n7,n8,n9 which have the type 
of the nodes from the categorical sketch the components of a behavioral rule 

=(L
𝑙𝑠
←K

𝑟𝑠
→R, P𝐿

1,Act, P𝑅
1) can be described as following  

The double pushout (DPO) graph transformation p  L
𝑙𝑠
←K

𝑟𝑠
→R can be represented as in 

figure 11. 
Particularly n1,n3,n5 ,n7 and n9 are nodes of the model graph, and n2,n4,n6 and n8 
are arcs connecting this nodes.  
The behavioral action Act=Act(n1,n2,n3,n4,n5,n6,n7,n8,n9), is a function which 
modifies the values of the attributes of the affected nodes . 

Table 1. The mapping of the attributes to the data domains: 

Component characterized by the attributes 

Buffers Name:string, 

MaterialType:string,  

Capacity:integer,  

OccupiedCapacity:integer 

Workstations Name:string,  

(MaterialTypeIn:string,  

MaterialAmountIn:integer,  

MaterialTypeOut:string,  

MaterialAmountOut:integer,  

Duration:time):record,  

OperationCode:longstring 

Transport 

Machines 

Customization is done according to the attributes 

defined for each type of transport machine. 

Conveyors Name: string,  

(MaterialType: string,  

CapacityUnit: integer,  

Capacity: integer,  

TransportTime: time,  

OperationCode: longstring): record 

Manipulator Name: string,  

(MaterialType: string,  

TransportQuantity: integer,  

TransportTime: time,  

OperationCode: longstring): record 

AGV Name: string,  

(MaterialType: string,  

TransportQuantity: integer,  

TransportTime: time,  

OperationCode: longstring): record 

Ports Name: string,  

MaterialKind: string,  

PortName: string,  

PortDirectionType: enum {Incoming, Outgoing},  

Direction {Right, Left, Up, Down}. 
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P𝐿
1 si P𝑅

1  are the precondition and the postcondition. The behavioral rule is executed 
only if these conditions are satisfied in the nodes of the L and R graphs. 
In the case of the MLMP language, the semantics of the behavioral dimension was 
implemented at the metamodel level through two behavioral rules that simulate the 
behavior of the two types of active components, workstation and transport machine. 
Each workstation is fed from one or more input buffers and deposits the processing 
result in one or more output buffers that have limited capacities. A workstation 
works asynchronously if it has raw material in the input buffers and enough space in 
the output buffers. If one of these conditions is not met, the station stops and will 
start automatically when the conditions are met. The processing operation has a 
certain duration. 
Each transport machine has a limited transport capacity and can transport several 
types of components in specified quantities. A transport machine works 
asynchronously if it has enough parts in the input buffer and has enough space in 
the output buffer. If one of these conditions is not met, the conveyor stops and will 
start automatically when the conditions are met. The transport operation has a 
certain duration. 
This can be formally expressed as following. 
The precondition for the execution of the Act action is: 

P𝐿
1(n1,n2,n3,n4,n5,n6,n7,n8,n9)=(rn5.Producs  rin1.Producs such that 

(r.ProductName=ri.ProductName  and r.Quantityri.Quantity)) and (rn9.Producs  

ron9.Producs such that (r.ProductName= ro.ProductName  and 

r.Quantityro.Capacity-ro.Quantity))  
The action Act(n1,n2,n3,n4,n5,n6,n7,n8,n9) defines the operations:   

For all records (r,ri) with rn5.Producs and rin1.Producs and 
r.ProductName=ri.ProductName, ri.Quantity = ri.Quantity-r.Quantity is calculated; 

For all records (r,ro) with rn5.Producs and ron9.Producs and 

r.ProductName=ro.ProductName, ro.Quantity = ro.Quantity+r.Quantity is calculated; 
In the current implementation there are no postconditions. 
The semantics of the behavioral dimension is given by the execution of the functions 
that implement the behavioral rules [DigiFoFD3.3].  
Executing a behavioral rule starts with matching it in a model, continues with 
checking the execution conditions, then if the conditions are met the rule is applied 
and the operation is performed in the OperationCode field, otherwise the rollback 
operation is performed. 
Figure 12 describes the process of finding a matching between the graph part L 
included in the behavioral rule and parts of the model graphs. This is a total 

matching morphism :L→G. The formal parameters ni take their type from the 

 

Fig. 11 Graph transformation p 
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sketch S. The model is an image of the sketch 𝓢 through the functor 𝕴. In the 

example the matched fragment is a part of a model representing a manufacturing 
system. The n1to n9 chain matches a line composed of the buffers B1 and B2 and of 
the workstation WS1. WS1 is feed from B1 through the port P1 and stores is output 
in B2 through the P2 port. 
The current values of the attributes of the matched nodes (e.g. Material Type and 
Occupied Capacity of B1) are replaced in the precondition predicates of the 
behavioral rule. If the predicates hold the function corresponding to the behavioral 
action Act is applied on the attributes values and they are updated correspondingly. 
The dynamic behavior of an MLMP model over time is accomplished by generic 
algorithms that implement the behavioral transformations. The simulation begins by 
initializing the system with data describing its initial state. The dynamics of the 
system are accomplished by the succession of the behavioral transformations 
executed. The semantics of an MLMP defines how process tokens are propagated 
through the arcs and objects of a model. 
In the modelling method concept the simulation of a model is based on mechanisms 
and algorithms that are written in a programming language. The behavior of the 
model is described by rules that specify how expressions are evaluated and 
commands executed. These rules provide an operational semantic that provides a 
language implementation. Preconditions and postconditions are implemented as 
logical expressions in ADOScript. The behavioral actions are implemented as 

 

Fig. 12 The match µ of the shape graph to the model M 
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ADOScript scripts.  

2.5 Example of the chocolate production line  

In this section a solution to the design problem is illustrated (Fig.13). The position 
and dimension have high relevance for the capabilities of the design solution. The 
actual version only supports for the relative positioning and orientation of 
components. Further support will be added with next versions. 

• AGV1 transports the buckets with chocolate ganache mass (m1) from the 
buffer B1 to the buffer B3; 

• AGV2 transports the cardboard packaging material (m2) from the buffer B2 to 
the buffer B7; 

• On line 1 (L1), the chocolate ganache mass (m1) is taken from B3 by the 
workstation WS1 which outputs the chocolate truffles (m3). The product m3 
is discharged in the buffer B4 feeding the transport line with freezing areas 
B11. The chocolate truffles are loaded in the buffer B5, which is feeding WS2. 
WS2 forms the aluminum bags from the aluminium (m7) stored in the roll 
(buffer B12) and fills them with chocolate truffles. The product is m4 – 
aluminum bags filled with chocolate truffles – and is stored in the buffer B6; 

• On line 2 (L2), cardboard packaging material (m2) is loaded from the buffer 
B7 to the WS3, where the cardboard packaging boxes (m5) are formed; they 
are loaded in the buffer B8; 

• On the assembly line, the Manipulator M1 transfers m4, from the buffer B6 in 
the buffer B9 and m5, from the buffer B8 to the buffer B10. The buffers are 

 
Fig. 13 The MLMP model of the chocolate truffles manufacturing line  
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feeding the packaging machine WS4, that stores the final products m6 
(cardboard boxes having aluminum bags with truffles) in B11 buffer. 

2.5.1 Simulating and analyzing the model  

In order to be a solution to the design problem the obtained model must be capable 
of reaching some state corresponding to the behavior of the real system 
(verification) and satisfying the requirements of the design problem (validation).  
In our case to be valid the model they should have a bound on the quantity of 
materials that are in the system (mass conservation) that means that given an initial 
finite quantity of material in the feeding buffer the quantity cannot grow infinitely in 
any component of the model. 
To satisfy the requirements the simulation of the model must reach the state in 
which in the final buffer there is the desired product in the desired quantity. 
The reachable states can be determined through formal analysis or through 
simulation. The formal analysis is sounder and can guarantee that certain states are 
(always) reachable but it can be difficult if the number of possible states of the 
model is high or impossible if the number of states is infinite. 
We have simulated the model of the manufacturing line with various initial states 
(material units in feed buffers B1 and B2). For 12 units chocolate mass in the B1   
and 3 units cardboard boxes in B2 – the process produces 3 units produced in B13 
at the finalization of the production cycle the results are presented in figure 14.  
The simulation proves only that they are simulation trajectories that are live 
(reaching the final state) and safe (not reaching interdicted states) and conduct to 
the expected result.   
For the more in-depth analysis of the model a formal description of its state space 
must be constructed suitable for formal analysis. The model has a finite number of 
states because the buffers have limited capacities expressed in integer numbers and 
the operation are incrementing or decrementing the number of units in a discrete 

             
Figure 14 Results of the simulation of the manufacturing line 
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finite way. So the best suited structure for a formal analysis is a is a Kripke 
structure. 
A state of the structure is represented as a tuple of the current material content of 
all buffers (Bi.Capacity). 
The set of atomic propositions AP is the set of propositions constructed with the 
increment (inci) and decrement (deci) operation on each buffer Bi.   
As the initial states determine the reachable states because the transitions are 
enabled or disabled depending on the buffer content, a Kripke structure will be built 
for each intended initial state.  
To simulate the whole production cycle from beginning states with quantities of 
material greater than 0 only in B1 and B2 are selected. 
The transition relations are constructed considering the transfer rules derived from 
the graph transformation rules (Section 2.3.2): 

1. Buffer with OccupiedCapacity = 0 can’t be decremented. 
2. Buffer wit OcuppiedCapacity = Capacity can’t decrement, 
3. If buffers are connected through a machine the transfer between them takes 

place only if the precondition of the machine (necessary units of each material 
in output buffers) are full filed and 2 is not the case for any output buffer.  If 
the transfer takes place the corresponding quantity of material is subtracted 
from the input buffers and added to the output buffer. 

Even if the buffers have finite capacities, if we consider only the possible state of 
each buffer, the possible state space is huge. Considering each buffer having a 
maximum capacity of 10 units with 13 buffers we have 1013 states. But not all states 
are reachable. Considering the conservation of the matter it will be impossible that 
all buffers are simultaneously full. Also considering the diffusion like propagation 
dynamics from each state only a reduced number of states are reachable from a 
given state. For example, from the initial state described above only states in which 
B3 and B7 are different from 0 are reachable. Further the quantity in B3 and B7 can 
have only the values of the transport capacity of the corresponding AVGs. 
As a proof concept we implemented in SML an algorithm that constructs the Kripke 
structure corresponding to a given initial state of the model. The algorithm 
generates the structure iteratively from the initial state.  

S={} 

L={} 

TR={} 

C={s0}  

for each s in C 

for each s’ to which it can transition from s 

conforming to the above rules. 

add s’ to C 

add label l(s,ap) to L  

add TR(s,s’) relation to TR 

remove s from C 

add s to S 

The resulted structure was exported in the .ktz format used by many model 
checkers. The TINA (Time Petri Net Analyzer) toolbox that we use also in 
conjunction with Timed Petri nets simulation, contains a State/Event LTL model 
checker named selt. Even if mode experience is needed for exploding al analysis 

27



International Journal of Advanced Statistics and IT&C for Economics and Life Sciences  
December 2021 * Vol. XI, no. 1 

© 2021 Lucian Blaga University of Sibiu 
 

capacity of the tool we succeeded in expressing some properties and testing them 
for Kripke structures constructed with different initial states. 
So the proposition F(B13=3) that express the fact that eventually (Finally) the end 
material buffer will contain 3 material units was proven true for the Kripke structure 
constructed from the same initial state as the simulation(B1=12,B2=3). This proves 
that the system will arrive to the desired final state. 

2.6 Extending the analysis capabilities 

The real advantage of having a model with a graph representation is that it can be 
transformed through graph transformation in equivalent models in other formalism. 
One very useful such modeling formalism is the Petri net.  
For the ease of understanding we present in figure 15 the basic components of a 
Petri net 
A Petri net is a bipartite graph having two types of nodes places (represented as 
circles) and transition (represented as rectangles). The arcs can connect only nodes 
of different types. The arcs are directed. For a transition, the places connected to it 
with incoming arcs are preplaces and the places connected to it with outgoing arcs 
are post-places. Tokens represented as black dots can be transferred from one place 
to other through transitions. Outgoing arcs extract tokens from the places, incoming 
arcs add token to the place. The arcs can have weights = integer numbers 
representing the number of tokens flowing to the arcs. The tokens can flow only 
through activated transition. A transition is activated when all its preplaces have a 
number of token equal or greater than the weights of the connecting incoming arcs. 
If activated the transition fires transferring the token from preplaces to post places. 
The distribution of tokens in the places at one moment is ca marking. The marking 
models the state of the represented system. 
Some basic rules in defining the equivalents of basic components are presented in 
this section. For each element, the marking (number and distribution of tokens) will 
be correlated with the current material content. The type of material is expressed 
through labeling or (if the targeted toolchains is allowing) through coloring. As 
natural equivalents, the places are associated with accumulators and buffers and the 
transition to transport and transformation. 
The model transformation to the equivalent Petri net representation is a graph 
rewriting. The Petri net embeds both the structure and the behavior in the graphical 
representation.  This takes place in two stages. 

1. For each component, an equivalent Petri net is generated based on the 

 

Fig. 15 Basic components of a Petri Net 
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corresponding behavioral rule =(L
𝑙𝑠
←K

𝑟𝑠
→R, P𝐿

1,Act, P𝑅
1) by following this rule  

• Each material content attribute is represented by a place. The current 
number of tokens in the place (the current marking) represents the 
current value of this attribute.  

• The Act is implemented through the connections In the Petri net. 
Considering that: 

o Each transition subtracts from the preplaces the number of tokens 
specified as label on the connecting incoming arc.  

o Each transitions ads to the post places the number of tokens 
specified as label on the connecting outgoing arc. 

the graph representation of the mathematical expression of the action is 
transformed in a Petri net. The net connects to the places representing the 
attributes but can include supplementary places. 

• The preconditions and post conditions are implemented using the implicit 
firing rule of the Petri net. According to this rule the transition is not firing 
if the marking of each preplace is lesser then the label of the connecting 
incoming arc. So each transition must be connected to al places that 
represent attributes that condition its activation. 

• The Petri net of the components includes also the corresponding ports 
from the in MLMP models. They are translated to input places - places 
with only outgoing arcs and output places - places with only ingoing arcs. 

Figure 16 presents the Petri net equivalent of the Buffer component. To implement 
the limited capacity (number of material units) of this component two variants can 
be employed: 

• bounded place can be used if they are supported by the Petri net 

 
 

a) 

 

b) 

Fig. 16 Petri Net implementation of a Buffer (B) 

a) using bounded places b) using a control place 
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modeling, simulation and analysis toolchain (e.g. BeeUp) (fig.16a) 
• a supplementary control place (as employed in the Petri net-based 

control theory) is provided with an initial marking corresponding to this 
capacity. (Fig 16b)) 

Figure 17 presents the Petri net model corresponding to a component from the 
Conveyor, Belt and Pipe subclass of the transportation machines class. The Capacity 
of the transport line is implemented in the arc weight. In the presented example 2 
units of the transported material are transferred from the input port In_t_m3 to the 
output port Out_m3 in each step which corresponds to the TransportTime. The 
presence of the command place C allows the control of the transport – blocking the 

 
Fig. 18 Petri Net implementation of a Manipulator 

 
Fig. 17 Petri Net implementation of a transport component (Conveyor,Belt,Pipe) 
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transfer if it has a token. 
The Petri net equivalent model of the Manipulator component is presented in figure 
18. The represented manipulator can transfer two types of materials m4 and m6. 
Each transfer operation registered in the Manipulator is represented as a transport 
element. The transfers can’t be performed simultaneously because there is only one 
robotic arm performing it that is represented by the token in the place Idle.  
For the Workstation, the equivalent model is presented in Figure 19. The 
transformation rule is that for each incoming ingredient needed by the operation a 
net equivalent to a buffer is created complete with limiting capacity place. All these 
nets are connected through the unloading transition which has as many post-places 
as resulting materials from the operation. The represented workstation takes 2 
pieces of m3 and 3 pieces of m3 and produces 1 piece of m2. 

2. In the second stage the Petri net equivalent net to the whole MLMP model is 
generated by transforming the MLMP models graph according to the following 
rules. 
• For each component and its connecting port, the equivalent Petri 

representation generated in stage 1 is included in the model   
• In the resulting collection of unconnected nets, each port is represented 

twice one time as an output port for one component and one as an input 
port for other component. These two instances are replaced by a single 
instance that maintain all connecting arcs. This creates the completely 
connected Petri net that is the equivalent of the MLMP.  

The Petri net equivalent of the MLMP model of the chocolate manufacturing line 
(Figure 12), obtained by following these rules, is presented in Fig. 20. 

 
Fig. 19  Petri Net implementation of a Workstation 
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It can be observed that this model is more complex and one level of abstraction 
higher than the MLMP model. Building such a model from scratch will need more 
Petri net modeling knowledge. Also, for bigger scale models the process can be 
tedious and error prone even for versed Petri net modeler. With this in mind is worth 
noting that the Petri net allows at least three extensions of the capabilities of the 
model: 

• the expression and analysis of concurrency - the declared goal of Petri net 
modelling 

• the adding of temporal dimension by associating time to transitions (time or 
timed Petri net) 

• formal analysis of the behavior with the possibility of proving that the systems 
reach or not some states. 

These are of very high importance for the analysis-based design of manufacturing 
systems and are supported by well developed, researched and established methods 
and tools.  

3 A2 The scheduling connection  

Due to the complexity of sub activity A2 the actual efforts in the DigiFoF project are 
concentrated in providing an interface to existing methods or toolchains. Our current 
efforts are concentrated in transforming the model expressed in MLMP into an 
equivalent model describing the scheduling problem that can be used by current 
optimization tools. Each scheduling problem specification consists of a domain 
description specifying the actors and a problem description describing the goals and 
constraints. The domain description can be algorithmically generated from the 

 
Fig. 20   Petri net model of the chocolate manufacturing line 
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manufacturing line model in MLMP. The problem description is a more individual and 
a particular task for the designer. 
We are working currently to provide the possibility for the designer to use:  

● the classic approach to transform the case in a matrix representation suitable 
for a mathematical optimization tool (e.g R , Matlab)  

● solution search through direct simulation in the DPPT tool or in a Petri net 
simulator after transformation. This can be extended to a heuristic design 
space exploration using gradient search for finding the optimum.  

● the transformation to a version/variant of the Planning Domain Definition 
Language (PDDL). Having this PDDL description of the scheduling problem a 
variety of planner that accept this format can be used  to generate an 
optimized schedule  

4 A3 The automation path 

The synthesis of supervisory control systems using Petri net is a well-established 
method for control system design.  The transformation of the MLMP model in its 
Petri net equivalent is consequently the obvious way to take in order to obtain the 
principal design of the control system that can enforce the schedule resulted from 
the A2 on the manufacturing line designed in A1. The basic principle of modeling the 
control system in Petri net is the introduction of control places that can control 
through the presence or absence of token the firing of transition representing 
controllable operation from the real word. This place can be fed with tokens from 
transitions that represent observable events. In this way the path sensor ->control-
> actuator is modeled. 
The control net can be built manually following some general rules or can be - for 
complex cases - automatically synthesized using the incidence matrix of the Petri net 
model representing the plant to be controlled and the corresponding mathematical 
expressions for the constraint that must be enforced by the control system. 
Figure 21 presents the control net for the manipulator M1 that implements the rule 
that the arm should load 4 aluminium bags with truffle(m4) on the corresponding 
belt (M1 WS4 m4) before loading one cardboard box (m5) on the other belt (M1 
WS4 m5) 

● The transfer of m4 is controlled by the control places C_m4. 
● The transfer of m5 is controlled by the control places C_m5. 
● The robotic arm can travel between the two positions P1 and P2. 
● A counter (P1 counter) counts the number of bags that are transferred with 

the robotic arm in position 1.  
● When 4 bags are transferred the move of the robotic arm from position P1 to 

position P2 (T P1P2) is triggered (Start P2) by feeding the corresponding 
control place (C P1P2).  

● After the cardboard box is transferred (M_m5) the reverse move (T P2P1) is 
triggered by the (C P2P1) control place  

● The cycle is started again. 
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5 Discussion 

We proposed a model-based methodology for the solving of manufacturing system 
design problems The methodology and the supporting tool are centered around a 
less abstract DSML. This allows those basic concepts familiar to manufacturing 
system designer as buffer or transport belts must not be constructed by refining or 
composing language elements like in more general modeling languages (UML, 
BPMN, EPC, Petri net). 
The language is easy to learn due to its few components. A high number of options 
and libraries with thousands of components helps productivity and expressivity but 
can be overwhelming and counterproductive in a training process or preliminary 
design. 
The modelling and simulation environment generated from the metamodel of the 
DSML is not a full-fledged 3D graphical development environment but with its 
degree of abstractions responds well to the intended use in training and preliminary 
design. 
Our method incorporates by design the possibility to impose constraints at the 
modelling language level in order to limit the modelling space to feasible/possible 
solutions. The resulting tool enforces these constraints in the use. This supports the 

 

Figure 21 Petri net model of the control system for the manipulator M1 
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development of feasible designs even by inexperienced designers and reduces the 
costs by avoiding incorrect models. 
The out-of-the-box extensibility of the DPPT is mostly quantitatively – the common 
user can add variation of the same type of component but cannot easily define an 
entirely new type of component. But the access to the conceptual model allows the 
translation of the model to other modelling language. The basic functionality for this 
is already implemented in the form of XML import export. By translating to more 
expressive and supported languages like Petri net or PDDL the functionality can be 
greatly enhanced covering all activities proposed for the design method. This can 
give an advantage over the majority of tools that from intellectual property and 
commercial reasons have a limited interoperability with other modelling and 
simulation tools.  
Because it is integrated in the ADOxx ecosystem, DPPT can access all facilities that 
this development environment offers as the combination of different modeling 
languages similar, shared repositories use of Web services, interface with 
CyberPhysical Systems and integrations in an Agile Modelling Method Engineering 
workflow. 

6 Conclusion and Future Development 

This whitepaper demonstrates the feasibility of the theoretical concepts presented in 
[DigiFoFD3.3] and provides motivational arguments for the implementation of 
DSMLs as basic components of the modelling method concept. The concepts that 
represent the lexical atoms of language and the relationships between them 
determine the design principles of flexible manufacturing systems as structure, 
components, and operations. The flexible manufacturing cell model becomes in this 
context a structure based on autonomous, distributed, cooperative and intelligent 
modules, able to fulfil the specific functions of the manufacturing process. 
An important aspect of manufacturing process models is building complex functions 
from a given set of simple functions, using different operations on functions such as 
composition and repeat composition. Category theory is exactly the right algebra for 
such constructions. 
The theory of categories works with patterns or forms in which each of these forms 
describe different aspects of the real world. Category theory offers both a language, 
and a lot of conceptual tools to efficiently handle models. 
Although the developed DPPT is only an initial version with a minimal set of facilities, 
it highlights the advantages of such a diagrammatic DSML. A DSML, with a small set 
of well-chosen domain concepts, can have complex semantics to cover the modelling 
domain. This is because the behavioral dimension of the models is embedded at the 
metamodel level. Also, this semantic load is due to the unlimited complexity of the 
relations between the lexical atoms of a diagrammatic language in contrast to the 
limited relations between the lexical atoms of the textual languages. 
We could say that the transition from programming languages to domain-specific 
diagrammatic modelling languages is as important as the transition from 
programming in assembly languages to programming in high-level languages. As we 
can see such a language is also intuitive and easily accessible due to its visual 
character especially if the notations used for atomic components are well chosen. 
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These features of a domain-specific diagrammatic modelling language make it 
usable in all domain-specific modelling phases since it is accessible to all parties 
involved in the modelling process. 
The DPP design method and tool developed is easy to learn and to use in the 
context of no or little design experience. It can be downloaded from the link 
http://digifof.omilab.ulbsibiu.ro/psm/content/dppt/info. Using the OMiLAB ecosystem, 

the tool facilitates the collaboration between the training team members and allows 
the establishment of collaborative networks on the knowledge triangle 
[Karagiannis2020]. 
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