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Abstract 

In the 1950s, Hagelbarger’s Sequence Extrapolating Robot (SEER) and Shannon’s 

Mind-Reading Machine (MRM) were the state-of-the-art research results in playing 
the well-known “matching pennies” game. In our research we perform a software 

implementation for both machines in order to test the common statement that MRM, 
even simpler, beats SEER. Also, we propose a simple contextual predictor (SCP) and 

use it to compete with SEER and MRM. As expected, experimental results proves the 

claimed MRM superiority over SEER and even the SCP’s superiority over both SEER 
and MRM. At the end, we draw some conclusions and propose further research 

ideas, like the use of mixing models methods and the use of Hidden Markov Model 

for modelling player’s behaviour. 

Keywords: matching pennies, Hagelbarger, sequence extrapolating robot, 
Shannon, mind reading machine, contextual predictor 

  

1. Introduction. Game description 

One of the simplest games that can be played by two opponents is the 
“matching pennies” game [6]. Both players choose a face of their own coin 
(“head” or “tail”) in secret and, after that, both expose their choices. One 
player wins if the choices are the same (hence the name “matching pennies”), 
the other when the choices are different. Even if theory says that, at random 
play, you neither win nor lose on long term, people’s play falls in patterns and 
this can be used by the opponent. The common people’s idea is that your 
smartness is what wins the game. Edgar Allan Poe’s character from “The 
Purloined Letter” uses also body-language signs to predict opponents moves at 
this game. 
 
Building a machine that plays this game requires the two fundamental steps in 
machine learning: building a model of the problem’s world (in this case of the 
opponent) and using this model to implement the behaviour. Therefore, being 
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a redoubtable problem from the (today called) machine learning point of view, 
it got research focus from the beginning of the artificial intelligence era. 
 
In the 1950’, at Bell Laboratories, David Hagelbarger and Claude Shannon 
each build their own machines to play the matching pennies game with lab 
colleagues (Claude Shannon built also other interesting machines [7]). For 
today such machines can be considered trivial, but for that moment, when the 
memory was implemented with relays, these were state-of-the-art research 
results, and therefore the machines got their remarkable place in the history of 
computer science. 
 
Hagelbarger calls his machine “SEquence Extrapolating Robot’ (SEER) [1], 
focusing on the feature that extrapolates the series of the opponent’s play. 
Shannon calls his machine “Mind Reading machine” (MRM) [2], focusing on the 
feature that it models the opponents’ mind. The Shannon’s MRM machine was 
a simplified version of the Hagelbarger’s SEER machine, but even so it hoped 
for and got better results. Images with the SEER and MRM machines can be 
found in [8]. 
 
Different from the SEER and MRM papers, where “+” and “-“ symbols were 

used to describe the play, we will describe the play using the “H” (Head) and 
“T” (Tail) symbols (according to the “matching pennies” game’s name). 
 
An example of a matching pennies game evolution can be: 
 

#play 

Player 1 

(plays for 

matching) 

Player 2 

(plays for 

different) 

 
Win/Loss 

(for player 2) 
Change 

(for player 2) 

1 T H  1 (Win)  

2 H H  0 (Loss) 0 (Same) 

3 T T  0 (Loss) 1 (Different) 

4 T H  1 (Win) 1 (Different) 

5 H H  0 (Loss) 0 (Same) 

6 H T  1 (Win) 1 (Different) 

7 H T  1 (Loss) 0 (Same) 

8 … …  … … 

 
In both Hagelbarger and Shannon machines, the machines were designed to 
play for “matching the pennies”, i.e. to read the opponent’s mind (hence the 
name “mind-reading machine” used by Shannon). 

2. Hagelbarger’s SEER 

The Hagelbarger’s SEER (SEquence Extrapolating Robot) is presented in [1]. 
Its following description is taken/adapted from that paper; all quotation marks 
refer to it. The block diagram of SEER is presented in Fig. 1. 
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“The “state of play” of the machine is determined by three things:” (presented 
in the order they appear in time) 

• “whether it won or lost play before last play”  (labelled W/L) 
• “whether it played same or different last time” (labelled S/D) 
• “whether it won or lost last play”     (labelled W/L) 

 
Based on those three bits of information (W or L, S or D, W or L) we have 8 
different states of play, labelled in Fig. 1 from WSW to LDL. 
 
For each state the machine’s memory “stores two kinds of information: 

a) Should the machine play same or different in this state in order to win? 
b) Has the machine been winning in this state?” 

 
 “The a) part of the memory state is controlled by a reversible counter which 
starts at zero and can count up to +3 and down to -3. At the end of each play, 
if the machine should have played same, one is added to the counter. If it 
should have played different, one is subtracted. The counter will thus contain 
the number of times the machine should have played same in that state minus 
the number of times it should have played different. The stops at +3 and -3 in 
effect make the machine forget ancient history.” 
 
The b) part is implemented by “remembering whether the machine has won 
both, one, or neither of the last two plays in that state.” 
 
The machine’s play is determined by the following rules: 

“If the machine has lost the last two times in the present state, it plays 
randomly with equal odds on same and different. 

 
Figure 1. Score evolution for SCP vs. SEER Game 2 (first 100 plays) 

Figure 1. Hagelbarger’s SEER block diagram [1] 
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If the machine has won one of the last two times in this state, it has 
three-to-one odds that it will follow the instruction in the a) part of the 
state memory. 

If the machine has won both of the last two times in this state, the 
machine must follow the instruction in the a) part of the state memory.” 

 
After each play the machine updates the content of the state memory and the 
“state of play” and is ready for the next play. 
 
For testing it, we have simulated the SEER machine in C++ language. An 
example of running our SEER implementation program (here against another 
SEER machine) is given in the following: 
 
Game evolution (after 27 plays): 
ME: HTTHHTTTTHHTHHHHHTTTTTTHTHT (SEER machine) 

HE: TTHHTHHTTHTHHTHHHHHHHHHHTHH (opponent) 

WH: 010100011100101110000001110 (win history - for machine) 

CH:  10101000101100001000001111 (change history - for machine) 
 

Machine’s state at the end of the sequence: 
Counts: -3  2 -2 -3  2  1 -1 -1 (the 0-7 state counters) 

WinHR:   1  3  1  1  1  2  0  2 (the 0-7 state win history registers) 

StateOfPlay: 6     (given by the gray 110 – WinOld_Change_WinNew) 

 
In the previous example the win history register contains an integer value built 
from the 2 last win bits (previous win is MSB, last win is LSB). Because the win 
history register for StateOfPlay=6 is 0, the machine will play randomly the 

next play. 

3. Shannon’s Mind-Reading Machine 

The Shannon’s Mind-Reading Machine (MRM) is described in [2]. As expected 
the machine looks a lot like SEER. The main difference is the fact that it tries 
to model the opponent’s behavior; therefore the wins and changes are 
computed from the point of view of the opponent. 
 
Like in SEER, MRM considers the 8 situations (states) based on the history 
from WSW to LDL (same labels as in SEER description). In each situation the 
player can do two things: “he may then play the same or differently”. If, in one 
state, the same action of the opponent (play same or differently) appears in 
both the last 2 times, this behavior is considered to be repeated by the 
opponent’s play and is used for the play of the machine. If this repetition of 
the opponent’s play does not appear, the machine plays randomly. 
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From the description above we can notice that the machine does not use the 
StateOfPlay-based 7 state counters (hard to implement by relays) anymore, it 
uses only the StateOfPlay-based 2-bit change history register. This is in line 
with the statement made in [1]: “C.E. Shannon has built a machine using 
about half as many relays which follows a simplified version of the same 
strategy.“ 
 
For testing it, we have simulated the MRM machine in C++ language. An 
example of running our MRM implementation program (here against another 
MRM machine) is given in the following: 
 
Game evolution (after 27 plays): 
ME: TTTTHTHHTTTHHHHHTTHHHTHTTTH (MRM machine) 

HE: HHHHHHTTHTTTHTTHTTTTHTTTHTT (opponent) 

WH: 111101111001011000110010101 (win history - for opponent) 

CH:  00000101100110110001100110 (change history – for opponent) 

 
ChgHR:  0  0  0  1  1  3  2  1 (the 0-7 state change history registers) 

StateOfPlay: 1       (given by the gray 001 – WinOld_Change_WinNew) 

 
In the previous example the win change register contains an integer value built 
from the last 2 change bits (previous change is MSB, last change is LSB). 
Because the change history register for StateOfPlay=1 is 0, the machine will 
assume the opponent will not change and therefore opponent will play same 
as previous – so that the machine will play same as the opponent, i.e. ‘T’. 
 
Obvious, in our C++ language implementations of SEER and MRM, we do not 
have the restrictions of the relay-based implementations of Hagelbarger and 
Shannon - i.e. we can maintain the whole histories for understanding/ 
debugging reasons – and also we can easily have a random number generator 
(the C library function random). 

4. Experimental results (1) – SEER vs MRM 

In [1] it is stated that “After much discussion an umpire machine was built 
which connected the two machines, and they were allowed to play several 
thousand games. The agility of the small machine triumphed, and it beat the 
larger one about 55-45.” 
 
In order to verify that statement, we made some tests in which the two 
machines play one against the other. Both machines are playing “same” (try to 
“match pennies”), it is the responsibility of the embedding environment to 
present to one of the machines the opposite selection of the other. 
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Because it is not clear from papers what was the goal of the machines: (1) to 
be the first winning a number of plays or (2) to achieve most wins from a fixed 
number of plays, we present the results for approach (2). This allows us to 
verify if the winner is the same after short or long games, therefore we 
present the results after 50, 100 and 200 plays for each game (winner in 
bold). 

Table 1. SEER vs. MRM results 

Game number 
Results after 

50 plays 

Results after 

100 plays 

Results after 

200 plays 

Game 1 26-24 47-53 89-111 

Game 2 18-32 38-62 77-123 

Game 3 24-26 38-62 83-117 

Game 4 23-27 49-51 88-112 

Game 5 20-30 42-58 87-113 

Game 6 27-23 48-52 95-105 

Game 7 20-30 40-60 83-117 

Game 8 22-28 45-55 88-112 

Game 9 27-23 49-51 91-109 

Game 10 24-26 46-54 91-109 

Average 23.1 – 26.9 44.2-55.8 87.2-112.8 

 
We can notice from the results that, for the beginning of the games, SEER has 
some chances against MRM but, in long enough games, loses in all cases. The 
result can be explained by the fact that, at the beginning, state memory does 
not contain enough data for good predictions, so the results tend to be 
random.  
 
In Fig. 2 we present the step-by-step evolution for the first 100 plays of Game 
1. We can observe that at the beginning SEER has some advantage but MRM 
recovers and, in the end, it wins. 
 
Even if it is not obvious what “the small machine … beat the larger one about 
55-45” means, our average result (for 100 play games) of 55.8-44.2 in favour 
of MRM looks remarkable. The “55-45” statement suggests that the original 
games consisted of 100 plays. This is why we have chosen to present in 
figures the first 100 plays only. 

 
Figure 2. Score evolution for SEER vs. MRM Game 2 (first 100 plays) 

61



International Journal of Advanced Statistics and IT&C for Economics and Life Sciences  
December 2020 * Vol. X, no. 1 

© 2020 Lucian Blaga University of Sibiu 

5. A simple contextual predictor 

It is obvious that both SEER and MRM suffer from the (hardware) limitation of 
history length that can be part of the stateOfPlay definition. Therefore we 
propose and test a simple contextual predictor (SCP), where such a limitation 
is overcome. The main idea is to find repeated patterns in opponents’ play and 
suppose that he will repeat the same pattern over again. 
 
In order to simplify the description of the algorithm and the implementation 
debugging we build a history string containing the description of each play (for 
the opponent’s point of view) using the following symbols: 

sw  = play same and win 

sl  = play same and lose 

dw  = play different and win 

dl  = play different and lose 

For a game evolution (after 33 plays): 
ME: THHHHTHHTHHHHHTHHHTHHTTTHTHTHTTTT (SCP machine) 

HE: HHTHHHHHTTHHHTTHTTHHHHHTHHHTTHHTT (opponent) 

WH: 101001000100010011100110010011100 (win history) 

CH:  01100001010010110100001100101010 (change history) 

(the win and change history are from the opponent’s point of view) 
 
we get the history string: 
sldwdlslswslsldlswdlslsldwsldldwswdwslslswswdldlswsldlswdwswdlsl 

 
We define the context of length N as the last N (double) symbols from 
the string. Because of the semantics of the build history string we search for 
matches only with a step of 2 individual symbols. 
 
We start by searching in the history string the occurrences of the context 
string for the context length N=1. For each match we consider the following 
sw,sl,dw or dl symbol and increment its counter. Then we increase the 

context length and repeat the procedure until we get 0 or 1 total occurrences 
of the current context in the history string. 
 
We then predict the next move of the opponent based on the longest context 
where the values for dl+sw (when we expect he will play same) and sl+dw 

(when we expect he will play different) are unbalanced (not equal). Certainly, 
if we have no match even at length 1 or, in all the analyzed contexts, the 
results are balanced we use a random play. 
 
For the previous game example we have: 
 
First step: length of context=1, context=”sl” 
sldwdlslswslsldlswdlslsldwsldldwswdwslslswswdldlswsldlswdwswdlsl 

#next occurrences: dl=3,sw=2,sl=3,dw=2, dl+sw=5, sl+dw=5 
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Second step: length of context=2, context=”dlsl” 
sldwdlslswslsldlswdlslsldwsldldwswdwslslswswdldlswsldlswdwswdlsl 

#next occurrences: dl=0,sw=1,sl=1,dw=0, dl+kw=1, sl+dw=1 

 
Third step: length of context=3, context=”swdlsl” 
sldwdlslswslsldlswdlslsldwsldldwswdwslslswswdldlswsldlswdwswdlsl 

#next occurrences: dl=0,sw=0,sl=1,dw=0, dl+sw=0, sl+dw=1 

 
Because the total number of occurrences is 1, we do not further increase the 
context length and stop the analysis. 
 
The longest unbalanced context is the one for length 3, so we predict based 
on it. The opponent will then choose to play d (different) relative to its last 

play ‘T’, so the SCP predictor will predict also ‘H’ (the SCP plays for “matching 

pennies”).  
 
The algorithm was described in “context” language, commonly used in data 
compression. In other research areas it is called “prediction by partial 
matching” (e.g. in [5]). 

6. Experimental results (2) – SCP vs. SEER and vs. 
MRM 

We also test our proposed SCP against SEER and against MRM, in the same 
approach like previous, i.e. in 10 games evaluated after 50, 100 and 200 plays. 
Table 2 and Fig. 3 present results of SCP against SEER while Table 3 and Fig. 4 
present results of SCP against MRM. 
 
Experimental results prove that SCP beats both SEER and MRM in long games. 
After 50 plays SEER and MRM win in few cases, but for longer games SCP 
recovers always. 

Table 2. SCP vs. SEER results 

Game number 
Results after 

50 plays 

Results after 

100 plays 

Results after 

200 plays 

Game 1 30-20 56-44 116-84 

Game 2 24-26 53-47 111-89 

Game 3 25-25 48-52 106-94 

Game 4 30-20 63-37 124-76 

Game 5 27-24 50-50 108-92 

Game 6 25-25 53-47 105-95 

Game 7 33-17 60-40 119-81 

Game 8 25-25 55-45 110-90 

Game 9 24-26 53-47 114-86 

Game 10 29-21 55-45 113-87 

Average 27.2-22.9 54.6-45.4 112.6-87.4 
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Table 3. SCP vs. MRM results 

Game number 
Results after 

50 plays 

Results after 

100 plays 

Results after 

200 plays 

Game 1 33-17 61-39 121-79 

Game 2 31-19 61-39 115-85 

Game 3 23-27 53-47 110-90 

Game 4 33-17 65-35 120-80 

Game 5 27-23 53-47 102-98 

Game 6 35-15 61-39 117-83 

Game 7 30-20 60-40 113-87 

Game 8 28-22 53-47 112-88 

Game 9 24-26 53-47 110-90 

Game 10 22-28 53-47 117-83 

Average 28.6-21.4 57.3-42.7 113.7-86.3 

 
The games selected to be presented in Fig. 3 and Fig. 4 are ones where, at the 
beginning, SCP loses, but the recovering process can be observed. The 
recovering at 100 plays is not by chance, it continues so that at 200 plays the 
win is consistent. 
 
In order to evaluate what was the maximum length of context that was found 
during the play and how often it was used for prediction (i.e. it was not given 
up because it was balanced) we saved, for each prediction, the length of the 
longest context found (LLCF) and the length of the context used for prediction 
(LCUP). In table 4 we present the number of occurrences for each such pair, 
computed as sum for all the 10 SCP vs. MRM games analyzed. 

 
Figure 3. Score evolution for SCP vs. SEER Game 2 (first 100 plays) 

 
Figure 4. Score evolution for SCP vs. MRM Game 3 (first 100 plays) 
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Table 4. Number of contexts found and used 

  Length of the context used for prediction (LCUP) 
Total 

   0 1 2 3 4 5 

Length 
of the 
longest 
context 
found 
(LLCF) 

0 60           60 

1 48 86         134 

2 50 140 296       486 

3 32 82 183 638     935 

4 1 4 8 33 327   373 

5 0 0 0 0 0 12 12 

Total 191 312 487 671 327 12 2000 

 
From the previous table we notice that the maximum context length found and 
used (in 200 play games) is 5, and the longest context found is, in most cases, 
also used for prediction (corresponding to the numbers from the first 
diagonal). 
 
In order to see how LCUP and LLCF evolve during play, we present in Fig. 5 
their evolution during the first 100 plays of game 3 SCP vs. MRM (game also 
presented in Fig. 3). When the longest context found is also used for 
prediction the red diamond point is no more visible (it is overlapped by the 
blue square). As the game evolves longer contexts are found and used. 

 
The SCP predictor was used also against some human players. We do not 
present such results because the results are very person dependent, and not 
statistically relevant. But, like with SEER and MRM tests done, the machine 
usually won. A rigorous set of tests for SCP (and maybe also for SEER and 
MRM) should be done in future, with enough games played so that the results 
became statistically relevant. 

7. Conclusions and future work 

The study of the SEER and MRM machines done in order to implement them in 
software reveals how remarkable was their design and implementation, 
considering the technological level at that time, i.e. implementing memory only 
by relays. 

 
Figure 5. Evolution of LCUP and LLCF for SCP vs. MRM Game 3 (first 100 plays) 
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Our experimental results are consistent with the statement that MRM, although 
simpler, beats SEER. Also, the proposed SCP beats both SEER and MRM. This 
result is not surprising, previous hardware limitations being overcome 
 
Another possibility that can be considered for SCP is to evaluate, in each 
context, the value sl+sw against dl+dw (that is, to consider the opponent 

less skilled, concerned only about changing or not in the current context). We 
assume that this strategy could be appropriate mainly for human opponents, 
but it needs to be tested. 
 
In our implementation we have used for prediction always the longest 
unbalanced context. It could be also useful to use all the lower order 
unbalanced contexts (but weighted somehow differently). For context mixing 
we can use the approach from PAQ methods [3]. Unfortunately, because of 
the short length of the games, only simple contexts and mixing models can be 
considered. 
 
The use of Hidden Markov Model HMM [4] looks promising for this application. 
After each play can we train the HMM model to learn the game history string 
(using a 4-symbol alphabet corresponding to the kw, kl, cw, cl cases) and 
therefore to model the behaviour of the opponent. After learning, the model is 
used to predict the next symbol and, from it, the opponent’s move. After 
having the information of the next play the training and predicting process 
repeats for the entire game. 
 
Our further research will focus on the idea of mixing different context length 
predictors and on the use of HMM for the matching pennies game. 
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