‘ SC | en d @) DOI; 10.2478/jjasitels-2020-0007

FitPi: Wearable IoT solution for a
daily smart life

Sabin PRUNA!, Anca VASILESCLE

!Transilvania University of Brasov, Romania, sabinpruna@gmail.com
2Transilvania University of Brasov, Romania, vasilex@unitbv.ro

Abstract

The extensive implementation of Internet of Things (IoT) solutions and its wide
popularity to the public over the past decade enabled emergent applications that
provide sophisticated, proactive health care solutions that can improve the quality of
life of individuals. This work proposes an IoT architecture and implements a
prototype solution that allows its users to improve their physical activity by collecting
vital signs using wearables and other environmental and habitual information in order
to monitor their activity and propose behaviors in a smart way that will allow them
to achieve their preset goals. The focus is on the increased usability of the system
employing refined solutions like voice recognition and smart visualization to enable
its seamless use while offering an interoperable architecture that will enhance its
flexibility. The prototype implementation offers a proof of concept evaluation of the
proposed system, applying state of the art technologies and using existing hardware
and popular gadgets.

Keywords: matching pennies, Hagelbarger, sequence extrapolating robot,
Shannon, mind reading machine, contextual predictor

1 Introduction

The Internet of Things or IoT represents any system of interconnected devices
which communicate with one another through internet-based solutions [4]. As
the technology matured, numerous branches stemmed from it. These comprise
from supply chain management, retail, surveillance to health care, data mining,
research or numerous other directions which filled in the technological gaps of
societal needs. A very useful and exhaustive survey on architecture, enabling
technologies, applications and challenges of the Internet of Things is published
in [6], and it mentions our targeted domain here, healthcare, as the first one
ready to benefit from IoT potentiality. The diversity and variety of the IoT-
based applications increases over time, and the interest of the software
developers community intensifies accordingly to the point of writing platforms
for “rapid development of IoT applications” like the TinyLink system presented
in [7].

67

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

A relevant area to this paper is the wearable market which consists of small
electronic devices that can be worn on the body, like regular accessories,
embedded in clothes or even implanted in the user’s body. As more and more
devices become connected to the internet via smartphones or directly through
embedded chips, the wearable market has gained traction for allowing the user
to be connected to the Internet spectrum with just something they wear [1].
Ranging from smart glasses to peacemakers, wearables are trying to enhance
and improve how we carry on our daily lives. Due to progress in this area, this
paper targets the use smartwatches, as mobile devices with a touchscreen
display designed to be worn on the wrist, to provide a top view of one’s daily
activities wherever as long as the user has an Internet connection. For the
implementation, a Fitbit [5] fitness tracker was used from the Versa lineup. This
device already provides a plethora of fitness data, as this is its main purpose,
however it lacks certain features related to lifestyle.

This paper aims to present an IoT-based system for supporting people who pay
attention to their own healthcare and are moving from personal care towards
a smart life. The purpose and, in addition, the novelty of our project are
expressed in terms of providing a complete and unique project that covers the
most important needs of a modern user by valuing the features of many
hardware components and software technologies and tools. Having a portable
hardware prototype and two interfaces, one website-based and one wearable,
which are ready to communicate with the user about their current personal life
status, the present FitPi is an original smartstyle solution. Moreover, it could be
welcomed as a vector of IT&C for economics and life sciences since its
implementation targets to improve the quality and standards of life from many
perspectives, such as health, food, budget, working time log.

Our project, FitPi, has been developed mainly from a student perspective, as a
wearable application that allows the user to quickly collect habitual and
environmental information, and digest data using lists related to their logged
records of personal health indices, money spent, food intake, as well as having
measurements of the temperature in their choose enclosure and others. An
interesting “framework for designing material representations of physical
activity data” is presented in [9] as Shelfie, and it is connected with our project
by the on-screen visualizations of physical activity data.

There are, evidently, numerous powered devices, at a higher price range, that
integrate into different operating systems ecosystems and there are also
options with a more sensible data-driven functionality such as the eButton
proposed in [16]. All these solutions can measure many health data, as our
FitPi project does as well, but, FitPi is distinguished by offering one application
for processing the collected data and two synchronized solutions for interfacing
these data. Therefore, the FitPi solution has many important characteristics, for
example, it is cheaper, it is focused on daily and accurately tracking physical
data, and it is smart-oriented in terms of involving its user in stepping to smart
life.

© 2020 Lucian Blaga University of Sibiu
68

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

Considering other similar Fitbit-based applications, we have remarked the Fitbit
Garden app [3] designed to enable children to engage in more physical activity.
Beyond this similarity of having the daily physical activity as a common goal,
the FitPi app will provide the Fitbit collected data to a broader range of lifestyle
features, from the wearable and weather station to the website and API. The
IoT-based architecture adopted for developing the FitPi project with AWS cloud
support [2, 13] has passed the test of analyzing other solutions, for example,
the IBM- based weather station described in [10]. From the hardware point of
view, our FitPi prototype accomplishes the necessary IoT infrastructure using
boards, sensors, actuators, displays, as well as other interconnecting
components described in the next sections. Combining the prefix from Fitbit
Inc. name and the suffix from the Raspberry Pi board name, we have the name
FitPi for our original project.

2 Platforms and tools as FitPi background

An important part of this paper context is around the notion of microservices.
Such services are an approach to application development in which a large
monolith product is built as a suite of modular services. "Each module supports
a specific business goal and uses a simple, well- defined interface to
communicate with other sets of services” [14]. In SOA (Services Oriented
Architecture), services use protocols describing how to transmit and parse
messages using description meta-data. This meta-data describes both the
functional features of the service and the characteristics of its service quality.
Services-oriented architecture aims to allow users to combine large pieces of
functionalities to form applications that are built exclusively from existing
services and combine them in an ad hoc manner. A service presents a simple
interface for the applicant that abstracts the essential complexity. Additional
users can also access these independent services without knowing their internal
implementation. A service consists of two parts: the Web Part where the API,
models, and everything needed for communicating with a client, and the
database section for persisting user data that contains only a Docker file so that
the service can be containerized.

From the practical point of view, our results described here are based on the
Fitbit submission. Fitbit Inc. is an American company headquartered in San
Francisco, California. Its products "are activity trackers, wireless-enabled
wearable technology devices that measure data such as the number of steps
walked, heart rate, quality of sleep, steps climbed, and other personal metrics
involved in fitness.” [5] FitbitOS represents the patented operating system of
the Fitbit company running on devices of different types, for which one can
develop apps using the specific SDK.

© 2020 Lucian Blaga University of Sibiu
69

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

Amazon Web Service has provided another significant support for our approach
as it affords the cloud infrastructure needed to host applications like ours. The
specific services can be accessed locally, but to be used by the client
applications, they must be published in an online environment, facilitating
access to them. For the FitPi project, we chose the Amazon Web Services
ecosystem as it is one of the most popular platforms in the area, using the EC2
(Elastic Compute Cloud) and AWS (Amazon Web Services) Lambda to
accomplish our goal [2, 13].

In order to have these software components physically interconnected by a
hardware system that is capable of capturing ambient data from a room, a
Raspberry Pi Arduino Uno board, a DHT-11 sensor, a microcontroller ESP8266,
and an LCD were used. The cloud provider was chosen to be AWS. However,
the Wi-fi chip has not been strong enough to pass the AWS authentication test
with higher security, all these consequently required also to use the Raspberry
Pi as an intermediary node between the station and the cloud.

As a branch of Amazon Web Services, AWS IoT allows the integration of IoT
devices with the ecosystem and Cloud made available by Amazon. AWS IoT
works using the concept of MQTT, each device having topics for specific
operations like reading, updating, accepting or rejecting queue data. All these
topics are incorporated in the Shadow concept that represents the device state
at the current moment.

The architecture entails two UI applications, one for the wearable which will be
the main focus of this paper, and a website which aggregates the data from
both the tracker and the mobile application while also making it editable. As
both applications require a common backend to fetch and post data, a decision
was made to use microservices developed in Python. Therefore, the business
logic has been treated as a service black-boxed from the users and exposed via
a public API to the related applications. The services were hosted on AWS to
provide reliability and scalability, making communication viable via HTTP
protocols. Accordingly, the development time was halved and, most notably,
the architecture had a common backend which resulted in uniformity. Firstly,
the services were developed using a combination of the Python and C#
programming languages in a domain-driven design workflow. The data was
persisted using a document-oriented database (MongoDB) which was
encompassed with the business logic layer and the API in a containerized image
through Docker so that the service may run independently of the machine it
resides on. Basically, AWS allows the services to be hosted with minimal costs
and virtually no downtime, providing availability worldwide and scalability on
the go, based on demands, in case of the user base would ever increase.
Moreover, a second IoT system was designed for the interest of this paper,
namely a weather station, powered by Arduino and based on temperature
sensors, a Raspberry Pi device and the Cloud, as we will describe in the next
sections.

© 2020 Lucian Blaga University of Sibiu
70

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

3 FitPi system components and features

This section is to present our FitPi system at the developing level: system
architecture, components, internal applications, functionalities and features,
workflows and specifically involved microservices.

FitPi is a system based on SOA design principles, requiring multiple frontends
to run on. As a result, a backend capable of acting as a black box has been
developed to assure the communication with many clients, regardless of their
origin. It uses two client applications, as follows: (a) a website frontend that
runs both in the browser, behind the scenes, and on the IoT device (Arduino
and Raspberry) and (b) a wearable frontend available on Fitbit devices for the
Versa and Ionic lineups, these versions being among the first running over the
FitbitOS. These two components and their appropriate interconnecting modules
are illustrated in Figure 1 and presented in detail in the next paragraphs.

The website application follows the ASP.NET MVC5 framework and the Model-
View-Controller paradigm, the controllers being responsible for receiving
incoming requests. After applying the required business logic, if any, the
controller produces the desired model with the data received from the backend.
This model is then applied to the desired view, which is finally returned to the
user. To support reusability, extensibility, and also the separation of concerns,
a 3-layer architecture was correspondingly developed for the website
application, as follows:

1. Presentation layer as the MVC layer, i.e. controllers, views, models were
created at this level;

,,,,,,,,,,

|
L
1M|croserv1ce |
| B [
1
|

Wearable App l Wezther Station

Figure 1: Application architecture

© 2020 Lucian Blaga University of Sibiu
7

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

2. Business logic layer for residing the specific Services for Managers in
order to keep the controllers light; for applying and housing the business
logic, specific constructs are called by the controllers, acting as a black
box to the Presentation MVC layer;

3. Data Access layer consisting of data manipulation processes and acting
as a black box or an interface for working with the data source; this is
where the repositories live and call on our data storage solution.

For the website, the Data Access layer was lightweight, in the sense that, owing
to the shared backend, we had external APIs to call in the business layer. This
solution exists mostly to persist information about the user’s current state.

The second application, namely the wearable frontend, was created using the
architecture required by FitbitOS. This application consists of a component
running on the smartwatch and a mobile component running on the
smartphone as a companion. Both communicate seamlessly with each other,
acting like one. The wearable application structure is presented as follows:

e Jresources as a folder keeping all external resources like pictures, styles, or
frameworks required by the app as well as the landing page (index.gui) which
acts as a master container for the entire wearable app user interface;

e /app as a folder housing the application logic that runs on the smartwatch
device; the files in here are responsible for interacting with the master view to
display user-requested views as well as communicating with the companion app
to fetch the data;

e /companion containing the companion logic side of the app which runs on
the mobile device; a specific socket communication solution has been assumed
here to ensure the interaction with the watch device and make the JavaScript
fetch API to communicate with the backend, i.e. sending and fetching data
through HTTP endpoints;

e /settings as a separate page of the companion app that establishes
application-level configuration, for example, the application colour map.

2019-07-03

Figure 2: Daily activity module - dashboard and details on steps

Besides these two client applications, in Figure 1 we have an extra third client
in the sense of a weather station that accomplishes our FitPi ecosystem. This

© 2020 Lucian Blaga University of Sibiu
72

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

station is a hardware device based on two components: (1) an Arduino board
that tracks the temperature data and (2) a Raspberry Pi that is connected to a
small LCD where the default browser is shown in full screen with the website
version of the app. The website has integrated the JavaScript speech- to-text
engine functionality to allow the users to communicate with the system via their
voice, similar, in this regard, to Amazon Alexa or Google Home.

The step forward to having a real software architecture based on these frontend
layers was in the direction of using SOA to add a suitable shared backend. This
backend application is user-oriented and responsible for doing the heavy lifting,
applying complex business logic and calculations and acting as an interface for
consuming the client applications. Therefore, our FitPi product performs as an
original and complete solution for managing user’s daily activities and allowing
easy access to information related to the personal progress achieved. Current
backend implemented functionalities are described as follows.

Daily activity is for manipulating data tracked by the wearable device,
considering: the number of steps performed in a day, calories consumed, floors
climbed, duration of intense activity, body weight, hours of sleep, distance
travelled and heart rate. These are available in a daily format, with an
appropriate overview, but also a detailed management tool for each element
throughout the use of the application is available. We add in Figure 2 two
captures from this module, one from the activity dashboard and the other with
the steps target presented in details.

Nutrition is for keeping a micro- and macro-nutrient-oriented view upon the
daily food in- take. Data on consumed foods such as calories and macro-
nutrients like carbohydrates, fats, proteins, vitamins, sugars are managed.
Again, data are presented in a daily format, with additional information on the
user’s monthly progress.

Budgeting is an original part for tracking the spent money, being focused on
categorizing transactions made in budgets, compared to the transaction
orientation of popular applications on the market, and setting thresholds for
each of them. It is possible to add new budgets, in the monthly context and
related transactions. At the same time, FitPi informs the user about exceeding
the thresholds and about the percentage remaining in each budget.

Timetable is an educational topic for keeping track of the users’ timetable, for
example, classes at university. Although anyone can use the application, there
is this custom section dedicated to students working parttime. Thus, FitPi
presents, in an easily understood format, the courses, laboratories and
seminars to which the student must attend, mentioning the current time at
which they must be active.

Work-log is a work-time management tool for monitoring the hours done as
usual work. As we already mentioned before, should one be working under a
flexible schedule, that user may want a way to record the number of hours they
spend at their day job, whilst also keeping track of having the hours required
monthly.

Weather is an extra functionality of our project for persisting data about
temperature for both the room and the city where the weather station device

© 2020 Lucian Blaga University of Sibiu
73

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

is positioned. FitPi provides information about the temperature and humidity of
the room where the physical system is located, as well as providing weather
forecast data over several days.

Applying an SOA-based solution comes with powerful extensibility as each
functionality or domain is isolated in its own microservice. Such architectures
may enable multiagent solutions leading to emergent applications [12]. This
way, in case of a business need for adding another requirement, a separate
microservice can be created without affecting the existing functionality. The
main microservices benefit is that each one can be created with a different tech
stack, the best way to solve the services use case. Most services were created
in Python programming language so that the Flask framework was used for fast
bootstrapping of the exposed API. A service follows the three-layer architecture
as specified in the frontend description with the attached details:

1. Presentation layer, where the domain models are present and the API
side of the service is created; for this particular use case, we have
resources (a resource construct consists basically of the endpoints of
particular functionality, similar to a controller); for simple services, this
is mostly the only layer used, owing to the simple CRUD business logic;

2. Business logic layer, where the managers are present with the role of
encompassing business logic if any;

3. Data access layer, where we house the data storage solution, in this
case, a NoSQL database: MongoDB; from a developer point of view, this
could be considered as the other visible structural part of the
microservice since there is a section for the API and another one for the
mongo database.

Having these separate sections, namely API part and Database part, which now
need to communicate with the frontends, we have accordingly used the built-
in solutions provided by Amazon Web Services. Each microservice section is
placed inside of a docker container, allowing the microservice to run on any
machine that has that docker installed. We have used EC2 machines to host
our microservices in the cloud, and these machines were then secured by hiding
them behind Amazons API Gateway, which is responsible for load balancing
and validating the requests. Only the frontend applications can access the
backend endpoints using token validation.

We conclude this system description section by adding both a principal
workflow and one

for the weather station part. The principal workflow example could be:

1. the user requests a specific page

2. a frontend controller or a function from the wearable app section
receives this request

3. the controller calls the manager from the business logic to get the data

4. the controller either calls the data access layer or makes a call to a
microservice for the data

© 2020 Lucian Blaga University of Sibiu
74

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

N o

9.

the API gateway intercepts this request and validates it; in case of
approval, it is then forwarded to one EC2 machine which is specific to
the microservice called; load balancing part decides to which machine
the request is forwarded (as there are several machines for each
microservice), also considering the performance reasons

the EC2 machine forwards the request to the docker container

the docker than forwards the request to the resource of the microservice
(API section)

the resource calls its manager if needed or uses the mongoDriver to
communicate with its database or fetches the data from an external data
source

once the service has finished manipulating the date, a roundtrip is done
all the way back to the frontend application

10.the controller receives the data, puts it in @ model and renders the

required view for the user.

The weather station part has a similar but slightly different workflow as it uses
AWS IoT, a SaaS functionality created by Amazon. For example, such a
workflow could consist of next steps:

1.

2.

-

the Raspberry Pi sends the data collected by the Arduino board to AWS
via the AWS Gateway

this is then sent to AWS IoT and stored in the device’s shadow (this is a
concept in AWS

which basically means the state of the device)

AWS IoT uses an MQTT protocol as the shadow acts as a message bus;
we have a serverless function (in AWS this is called a Lambda function)
that subscribes to this message bus; on each shadow change given by
a new temperature data, the function stores this in a NoSQL database,
DynamoDB

the function also exposes an endpoint for retrieving this data when a
frontend application demands it.

4 User perspective on FitPi as an IoT system

Apart from being a modern and up-to-date IoT system, our FitPi project is
significant and valuable support for any user interested in monitoring their
everyday life and publishing the daily activities results on a social network, here
Twitter. This feature was achieved by implementing a TwitterBot [15], and
Python programming language has been used because it provides modules
ready to use the Twitter API quickly, acting as a black box over low-level
implementation. Since it has been observed that text messages sent to the
user are not effective in keeping them motivated beyond a week, perhaps
having the information published on a social media platform would motivate
the user to keep trying to improve their lives and continue using the FitPi

© 2020 Lucian Blaga University of Sibiu
75

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

product to pursue their goals. For example, in Figure 3 we have a page of
statistics prepared for keeping the user’s motivation at a high level.

You're doing great with active minutes, you completed 191% of your goal!
You need to focus more on steps, you've only completed - = % of your goal :(

You are below your target by cals! You've eaten 98 carbs 283 mg of salt more then you should have.

You should spend less on Necessities, you're 64% through your goal of 1500
You haven't put any money away this month, consider lowering your spending!

»

Your next class is GoogleGo with Monescu_V in P12

You're below your required work hours by * hours

There are 20°C outside with chances of light rain. Take an umbrella with you.

Figure 3: Statistics - user view

Breakfast

Calories: 93 N

Carbs: 1662

Figure 4: Nutrition module - website and wearable views

As a Fitbit-based project, our system has access to all the physical activity data
which are stored in the Fitbit data service. The user simply must carry on with
their daily life, and the tracker will monitor all that is related to steps taken,
calories burnt, floors climbed, and some other. Data that are related to weather
is either retrieved from OpenWeatherMap when the user wants to know more
about temperature from other areas or by using the provided weather station
which records information about temperature and humidity every one minute.
For monitoring food consumption, we used the database provided by
MyFitnessPal (MFP). Our users can either log their meals into this MFP as it is
synchronized with FitPi or directly into the FitPi website. The timetable has data
directly fetched and calculated from the Transilvania University of Brasov
timetable. Other sections have their own in-house database so that when a
user logs something into the website, data is stored and can be displayed both
in the website and the wearable application. This mirroring solution for the
specific case of the Nutrition data is represented in Figure 4.

Each of our system modules is implemented with respect to the IoT approach,
and it succeeded by featuring the specific aspects of security, privacy, scalability
and other given self- properties in different manners, as we highlight in the
following.

© 2020 Lucian Blaga University of Sibiu

76

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

Our system faces the security problem from many perspectives, for example.
The services were hosted on AWS to provide a higher level of reliability and
scalability (making communication viable via HTTP protocols), and the
configuration files contain both private keys and other data requiring higher
security. Moreover, we accessed the AWS console for EC2 services and chose
a Linux AMI (Amazon Machine Image), being optimally a hosting environment
for services. In the management console, we created a thing to which we
assigned a certificate, a public key and a private key (used in the Raspberry
python script), so data transmission can be done securely and encrypted via
HTTPS.

As we have already mentioned before, the service that deals with physical
activity has numerous managed data elements such as the number of steps
taken in a day, calories consumed, floors climbed, duration of intense activity,
body weight, hours of sleep, distance travelled and heart rate. The uniqueness
of these data is given by their retrieval from a compatible physical activity
monitoring device, for example, Fitbit Versa. The fitness tracker could be
synchronized with any mobile application that sends data to the Fitbit Cloud.
Using the access provided by the Web API, as a system developed by Fitbit to
access data from tracking devices, we were able to fit it out in our architecture
and synchronously obtain the data needed for the FitPi domain of interest. Since
these data need to be retrieved at regular intervals to synchronizing the
information between FitPi and fitness tracker, we used Flask and APScheduler
(Advanced Python Scheduler), a Python tool that can configure jobs to run at
regular time intervals on a separate thread, thus maintaining the functionality
of the services in Flask. The APScheduler tool is also used to synchronize data
from FitPi with data from MFP for the current day. Data is stored in an
aggregate document, with information about all the tables in four options
defined by the MFP (breakfast, lunch, dinner and sweets).

The nutrition service manages data on consumed foods such as calories and
macro-nutrients, like carbohydrates, fats, proteins, vitamins, sugars. This data
comes from the MyFitnessPal database, the food products being registered in
the application provided by MFP arriving in the cloud. Because the MFP access
via API is private and it is not possible to access it by an individual developer,
we used a web scrapper that directly parses the desired data (if it is in the
public domain) from the MyFitnessPal website based on the user id and
successfully passed the privacy problem.

5 Discussion and future work

The more these new branches of technology continue to emerge, the more
humans become involved in personal wellbeing, and the abundance of data
their smart devices provide them allow a deeper insight into their lifestyle. Even

© 2020 Lucian Blaga University of Sibiu
77

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

if are there countless health applications available on a multitude of wearable
platforms, this FitPi project aims to complement these apps in the direction of
daily activity monitoring based on smart solutions.

We may conclude now that the lifestyle management system, FitPi, targets to
cover most of the daily activities adopting an intelligent approach. The FitPi
website frontend assembles all the information related to the physical activity
using real data and presents it in an user-friendly and easy-to-understand
format. By means of the voice assistant, it becomes a reactive system that
notifies the user about the progress made in reaching the personal set goals,
as well as about a possible decline in the effort made, thus determining the
user to better their approach. This improvement is also supported by the other
functionalities of the application, such as monitoring the food intake and finance
management. At the same time, FitPi facilitates certain elements of the user’s
life and, by suggesting possible actions to be taken accordingly to the recorded
vital signs values, it performs like a self-adapting IoT system. Also, by
developing an application available on a wearable device, the user could access
the FitPi data transparently, which increases their motivation to maintain a
healthy lifestyle.

For now, the current FitPi version is a single-user version, the developer. The
biggest step that FitPi has to do in the near future is to create and integrate a
service that allows multiple users to register, for example, using ASP.NET
Identity support. This also involves versioning existing services, implementing
new specific security features and personal data protection by saving unique
data to each user account.

FitPi allows users to access internet services through a browser or Fitbit devices.
Still, to grow their demographic and fully satisfy existing users, there is a need
for native applications on mobile devices. Thanks to the adopted service
orientation architecture, this can be achieved much faster - already having the
backend functionality, it requires only the creation of native client applications
to use these services.

Last but not least, integrating the voice system in all areas of the application is
a valuable step forward in the direction of having an intelligent notification
system. Now, FitPi offers limited support for data aggregation, and this allows
the user to be aware of his or her progress or regress. But, by implementing
an independent active notification system based on o set of recommended
actions that the user should take, we add artificial intelligence to the system
and greatly improve the user’s success rate.

Once these extensions are implemented, we can say that FitPi is not only an
alternative to current solutions, bringing various improvements, but a complete
IoT system, able to positively influence its users every day, inspiring them in a
smart way to reach their lifestyle goals.

© 2020 Lucian Blaga University of Sibiu
78

International Journal of Advanced Statistics and IT&C for Economics and Life Sciences
December 2020 * Vol. X, no. 1

References

[1] Aloi, G., Caliciuri, G., Fortino, G., Gravina, R., Pace, P., Russo, W., Savaglio, C. Enabling IoT
interoperability through opportunistic smartphone-based mobile gateway, Journal of Net-
work and Computer Applications, March, 74-84, ISSN: 1084-8045, 2017

[2] Amazon Web Services homepage, https://aws.amazon.com/. Last accessed 9 November
2020

[3] Amresh, A., Lyles, A., Small, L., Aloysius Gary K., FitBit Garden: A Mobile Game Designed
to Increase Physical Activity in Children, Proceedings of the 2017 International Conference
on Digital Health (DH'17), 200-201, Elsevier, London, United Kingdom, ISBN: 978-1-4503-
5249-9, 2017

[4] George Eleftherakis, Dimitrios Pappas, Thomas Lagkas, Konstantinos Rousis, Ognen
Paunovski, Architecting the IoT Paradigm: A Middleware for Autonomous Distributed Sensor
Networks, International Journal of Distributed Sensor Networks (IJDSN), 139735:1-
139735:17, ISSN: 1550-1477, 2015

[5] Fitbit Inc. homepage, https://dev.fitbit.com/build/reference/. Last accessed 20 September
2020

[6] Arindam Giri, Subrata Dutta, Sarmistha Neogy, Keshav Dahal, Zeeshan Pervez, Internet of
things (IoT): a survey on architecture, enabling technologies, applications and challenges,
In Proceedings of the 1st International Conference on Internet of Things and Machine
Learning (IML 17), Association for Computing Machinery, New York, NY, USA, Article 7,
112, ISBN: 978-1-4503-5243-7, 2017

[7] Gaoyang Guan, Borui Li, Yi Gao, Yuxuan Zhang, Jiajun Bu, Wei Dong, TinyLink 2.0:
integrating device, cloud, and client development for IoT applications, In Proceedings of
the 26" Annual International Conference on Mobile Computing and Networking (MobiCom
"20), Association for Computing Machinery, New York, NY, USA, Article 13, 113, ISBN: 978-
1-4503-7085-1, 2020

[8] Kasun Indrasiri, Prabath Siriwardena, Microservices for the Enterprise: Designing, Devel-
oping, and Deploying, APress Media LLC, Springer Science + Business Media New York,
ISBN: 978-1-4842-3857-8, 2018

[9] Rohit Ashok Khot, Larissa Hjorth, Florian Mueller, Shelfie: A Framework for Designing
Material Representations of Physical Activity Data, ACM Transactions on Computer-Human
Interaction, Vol. 27, No. 3, Article 14, Publication date: May 2020, ISSN: 1073-0516, 2020

[10] Kishore Kodali, R., Mandal, S., IoT Based Weather Station, International Conference on
Control, Instrumentation, Communication and Computational Technologies (ICCICCT),
680-683, IEEE Kumaracoil, ISBN: 978-1-5090-5241-7, 2016

[11] Michael Papazoglou, Web Services and SOA: Principles and Technology, Pearson Edu-
cation Canada, ISBN: 978-0-2737-3216-7, 2012

[12] . Paunovski, O, G. Eleftherakis, and A.]. Cowling, Disciplined Exploration of Emergence
using Multi-Agent Simulation Framework, Computing and Informatics, 28(3):369-391,
ISSN:1335-9150, 2009

[13] Sarkar, A., Shah, A., Learning AWS - Second Edition, PACKT Publishing House, ISBN:978-
1-7872-8106-6, 2018

[14] SHIELDX homepage, https://www.shieldx.com/. Last accessed 20 September 2020

[15] Twitter development support homepage, https://developer.twitter.com/en. last accessed
11t November 2020

[16] Yicheng Bai, Chengliu Li, Yaofeng Yue, Wenyan Jia, Jie Li, Zhi-Hong Mao, Mingui Sun,
Designing a wearable computer for lifestyle evaluation, 38t h Annual Northeast
Bioengineering Conference (NEBEC), 93-94, IEEE, Philadelphia, PA, ISBN: 978-1-4673-
1140-3, 2012

© 2020 Lucian Blaga University of Sibiu
79

