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Abstract 
Automatic document classification is a must when dealing with large collection of 
documents. WEKA, and especially Weka Knowledge Flow Environment, is a state-of-the-art 
tool for developing classification applications, even with no programming abilities. We 
continue our WEKA project presented in a previous paper but changing the classification 
step, now using the Multilayer Perceptron Classifier. The used dataset is one based on 
documents from the Reuters Corpus and with vector space model representation, the number 
of features being reduced by using the InformationGain method. The theoretical bases for 
Multilayer Perceptron neural networks are presented, both for the architecture and for the 
backpropagation learning algorithm. In order to evaluate the performance of the Multilayer 
Perceptron Classifier experiments were done, first with the default network architecture. 
Results are presented and prove valuable, but for a large number of features the 
performances decrease. In order to improve the obtained results we test different fine-tuned 
architectures by changing the number of neurons in the hidden layer. Therefore, the Weka 
Multilayer Perceptron Classifier is a classifier that deserves attention, but mainly when time 
requirements are not important at all.. 

Keywords: Document classification, WEKA framework, Multilayer Perceptron 
Classifier 
  

1. Introduction 
The large amount of data, which is generated by the communication process, 
represents important information that is accumulated daily and which is stored in form 
of text documents, databases etc. Retrieving of this data is not simple and therefore 
data mining techniques were developed for extracting information and knowledge. 
These are represented in patterns or concepts that are sometimes not obvious. 
A complete retrieved process starts with the document representation part, where the 
data is extracted from flat files and represented into a manner that can be understand 
by the machine. There are several representation methods each offering the possibility 
to keep more or less syntactic and semantics of documents. The process continues 
with the step of selecting the most relevant features. In the text mining process, a very 
large number of features are obtained, and too much of them can disturb the learning 
process. Therefore, this step is very important, and proposes to select the most 
relevant features. Only after this step the learning algorithms are applied in order to 
get the results.[3,6,9] 
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In this paper we focus on the learning step and propose the use of a Multilayer 
Perceptron Classifier. The dataset used for testing this classifier is the same as in the 
previous article ([2] and [8]) to make a better comparison between classifiers. In [2] 
we evaluate the Naïve Bayes classifier and in [8] we evaluate the Support Vector 
Machine Classifier. The idea of this paper is to evaluate a learning algorithm based on 
Multilayer Perceptron for different number of features extracted form text documents. 
We evaluate the classification performance from accuracy, precision and recall point 
of view. The experiments have been described and implemented using the Weka 
framework [10].  
The section 2 presents some theoretical aspects important to the paper regarding 
multilayer perceptron. In the section 3 we present the Weka framework and the 
components used. The section 4 presents the experimental results performed using the 
WEKA framework. Section 5 contain the conclusions and further work of this 
paper.Editorial Board 
 

1 Theoretical Aspects  
The model of the artificial neuron was proposed by McCulloch and Pitts in the 40’s 
and was generalized later in many ways. The most popular approach is: 
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Figure.1 Artificial neuron 

The neuron computes the weighted sum of n inputs, adds a threshold value and then 
applys an activation function to the result in order to compute the output. 
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As activation function the most used is the sigmoid function, defined as: 
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The nonlinearity of that function is essential for the power of the neural networks 
model. Also, the function scales the output to the [0-1] range. 
The previous described perceptron can classify only linear separable input vectors 
(XOR being the classic counterexample). This was proven since 1969 by Minsky and 
Papert and has reduced the interest of researchers for neural networks. To solve the 
problem multilayer perceptron had to be used but it was not known how to update 
the weights of hidden (intermediate) layers. The updating rule for the weights (briefly 
described below) was discovered only in the late 80’s and was the basis of the boom 
of neural networks field. 
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The most popular architecture for neural networks is the multilayer perceptron where 
each neuron is connected to all the neurons from the previous layer. The only 
exception is the first layer whose units only repeat their inputs. In the following figure 
we exemplify the most common approach with one single hidden layer (proven 
theoretical to be sufficient). 

 
Hidden layer Output layer Input layer 

 
Figure 2 Architecture for neural networks is the multilayer perceptron 

 
In the forward step equation (1) is applied for each neuron, first for the hidden layer 
and then for the output layer (therefore the “feed-forward” name) in order to obtain 
the output value. Being in a case of supervised learning we have also the desired 
output for each input vector. Therefore, the representation error E that appears can 
also be computed (defined as common Euclidian distance between obtained output 
and desired output vectors). 
The learning rule falls in the category of “error-correction rules”. The most general 
rule to update a weight w (from any layer!) is: 

 w
Ew
∂
∂

−=∆ η
 (3) 

where E is the error (as a function of w) and η is the learning rate. The evolution is 
opposite to the gradient of the error, therefore decreasing the error. Even if not 
plausible from the biological point of view, it looks like the error propagates back 
through the network (in the backward step) and updates the weights, hence the 
“backpropagation” name of the learning algorithm. The forward and the backward 
steps are repeated until the error is sufficiently reduced. Complete formulas for each 
weight update can be found in [1]. Sometimes, in order to increase the chance to find 
global minima, a (selectable) fraction of the w∆  from the previous step of the 
learning is added to the w∆  for the current step (the added part being known as the 
momentum term). 

2 WEKA framework 

2.1 General information 

In developing autonomous document classification systems for text documents, a 
series of individual subsystems are included. These subsystems must be harmonized 
together to produce a good and performant classification system. For designing these 
systems, there are many frameworks that help us, using a small set of information, to 
optimize the flow between these subsystems. After this optimization, for a real 
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problem solving, we need to implement those subsystems as they were configured in 
the framework. One of this framework that contains a collection of machine learning 
algorithms is WEKA (Waikato Environment for Knowledge Analysis [9]). This 
framework has been developed to be able to design a series of data mining solutions 
using subsystems that are already developed and made available. The WEKA 
framework offers a lot of algorithms that are written in java and are available open 
source for integrate in your projects. But, for avoiding the programing part, WEKA 
offers also a framework that permits you to describe your data mining application as a 
flow of actions and to evaluate it, without the need to write code. The only thing to be 
done is to write code to transform your specific dataset into a format that is accepted 
by WEKA. 
WEKA offers four different options for implementing your data mining process. The 
WEKA Knowledge Explorer is an easy to use framework with a graphical user 
interface that offers all the facilities of WEKA package. Another framework is Weka 
Experiment Environment that permits you to create, run and modify an experiment in 
a simple manner. The experiment can be described into a text file and tested with the 
WEKA framework. WEKA KnowledgeFlow Environment permits you to describe 
your experiment as a flow of steps with some visual connections between them. The 
WEKA Workbench contains a lot of state of the art data preprocessing and machine 
learning algorithms. In this framework the user can quickly try out existing machine 
learning methods on new datasets in a very flexible way. 

2.2 The flowchart of the system 

In our experiment we use WEKA KnowledgeFlow Environment and the flowchart 
for our experiment if presented in the next figure.  

 
Figure 3 The Multilayer Perceptron Classifier flowchart 

In this flowchart we change only the Classifier so that a lot of components used in this 
flowchart were already presented in previous articles [2] and [8]. Here we present 
those components only briefly and more detailed the MultiClass Classifier 
Component. 
The ArffLoader Component is used to load our data file that contains the entire 
dataset, both the training part and testing part. The dataset is saved in one file in the 
arff format that contain the vector representation of all 7051 Reuters files [7]. Each 
document has 7000 different features-attributes. 
After all 7000 attributes for each document vector, we have a special attribute that 
represents the class where the document belongs. This class is the expected class in 
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the dataset (because we talk about a supervised learning). In the presented 
experiments, we have considered that our documents belong to the class (and labeled 
with “yes”) or not in the class (and labeled with “no”). Thus, we have considered a 
binary classification. 
In all experiments we evaluate the classification accuracy for different number of 
features between 200 to 5500 features from a total of 7000 features. For selecting the 
most relevant attributes we use the AttributeSelection component. This component is a 
supervised attribute filter that can be used to select the desired number of attributes. It 
is very flexible and allows various search and evaluation methods to be combined. For 
attribute selection we have chosen the Information Gain Attribute Evaluation method. 
In our experiments, we have used the default value for the threshold and have changed 
the numToSelect as desired in the range 200-5500 as presented in the experimental 
results section. 
After selecting the features, we use TrainTestSplitMaker component that permits us to 
split randomly our dataset into a training part and a testing part. In the configuration, 
we specificity that 70% of data will be used for training and the rest of 30% to be used 
for testing. 
In order to evaluate the classification performance, we use the 
ClassifierPerformanceEvaluator component that is designed to evaluate classifier 
results. The WEKA has a lot of evaluation metrics already implemented, as accuracy, 
precision, recall, f-measure, TrueRate, NegativeRate [9]. In our experiments we use 
only precision, recall, accuracy and f-measure [12]. 
For visualizing the results, the WEKA propose a lot components and we chose 
TextViewer component that permits to write the classification results into a text file. 

2.3 Multiclass Classifier 

The WEKA framework contains a lot of learning algorithms, as classifier, clustering 
and association algorithms. The classifier algorithms have a specific tab with the 
Classifier name where a lot of algorithms from different categories (as multilayer 
perceptron, Bayes, rules, trees, lazy and more) can be found [4, 5]. WEKA has also a 
Clusterers tab with learning algorithms as EM, Hierarchical, Simple KMeans and 
more. For our experiments, we use a classifier algorithm because we have a dataset 
that is already classified. We chose the Multilayer perceptron classifier component. 
The MultilayerPerceptron component is in the tab weka.classifiers.functions and has 
many parameters for configuration. In the following, we describe briefly these 
characteristics. 
We chose the option SYNOPSIS that represents a classifier that uses backpropagation 
as learning method to classify instances. This network can be built by hand, created 
by an algorithm or both. The nodes in this network are all sigmoid (except for when 
the class is numeric in which case the output nodes become linear units without 
threshold). 
The parameters that can be used to configure this component are[10,11]: 
- seed - used to initialize the random number generator. Random numbers are used 

for setting the initial weights of the connections between nodes, and for shuffling 
the training data. 

- momentum – is the value that is applied to the weights during updating. 
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- nominalToBinaryFilter – represents the filter that will preprocess the instances. 
This could help to improve performance if there are nominal attributes in the 
dataset. 

- hiddenLayers - This defines the number hidden layers of the neural network and 
the numbers of neurons from each layer. This is a list of positive integer numbers, 
one for each hidden layer, comma separated. To specify no hidden layers you 
need to put a single 0 here, and this will only be used if auto build is set. There 
are also wildcard values 'a' = (attributes + classes) / 2, 'i' = attributes, 'o' = classes, 
't' = attributes + classes. We have used the ‘a’ wildcard. 

- validationThreshold - Used to terminate the learning process. The value here 
dictates how many times in a row the validation set error can get worse before 
training is terminated. 

- GUI - Brings up a graphic user interface. This will allow the pausing and altering 
of the neural network during training. Can add a node, create new connections 
between nodes., remove a connection or a node. If this option is activated then the 
network is automatically paused at the beginning and the user can reconfigure the 
network. Once the network configuration is done, it will pause again and either 
wait to be accepted or trained more. If the GUI is not set the network will not 
require any interaction. 

- normalizeAttributes - This will normalize the attributes. This could help to 
improve the performance of the network. This is not reliant when we have 
numeric classes. This will also normalize nominal attributes as well (after they 
have been run through the nominal to binary filter if that is in use) so that the 
nominal values are between -1 and 1 

- numDecimalPlaces - The number of decimal places to be used for the output of 
numbers in the model. 

- batchSize - The preferred number of vector instances kept in cache once if batch 
prediction is being performed. More or fewer instances may be provided, but this 
gives implementations a chance to specify a preferred batch size. 

- decay - This will cause the learning rate to decrease. This will divide the starting 
learning rate by the epoch number, to determine what the current learning rate 
should be. This may help to stop the network from diverging from the target 
output, as well as improve general performance. Note that the decaying learning 
rate will not be shown in the GUI, only the original learning rate. If the learning 
rate is changed in the GUI, this is treated as the starting learning rate. 

- validationSetSize - The percentage size of the validation set. The training will 
continue until the error on the validation set has been consistently getting worse, 
or if the training time is reached. 

- trainingTime - The number of epochs to train through. If the validation set is non-
zero then it can terminate the network learning. 

- debug - If set to true, classifier may output additional info to the console. 
- autoBuild - Adds and connects up hidden layers in the network. 
- normalizeNumericClass - This will normalize the class if it is numeric. This could 

help improve performance of the network, It normalizes the class to the range     
[-1,1]. Note that this is done only internally, the output will be scaled back to the 
original range. 

- learningRate -- The amount the weights are updated. 
- doNotCheckCapabilities -- If set, classifier capabilities are not checked before 

classifier is built (Use with caution to reduce runtime). 
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- reset - This will allow the network to reset with a lower learning rate. If the 
network diverges from the answer this will automatically reset the network with a 
lower learning rate and begin training again. This option is only available if the 
GUI is not set. Note that if the network diverges but isn't allowed to reset it will 
fail the training process and return an error message. 

If the GUI is activated for an input vector having 10 attributes and 6 neurons on the 
hidden layer the network looks like the following figure.  
 

 
Fig. 4. GUI – representation on 6 neurons 

3 Experimental Results 
The experimental results have been performed in the WEKA framework as described 
previously. For the AttributSelection component, we have used a parameter that 
represents the number of features that we want to be retained. In Table 1 we present 
the results obtained for a number of features between 200 and 1000 by the neural 
learning algorithm. We have evaluated the following measures: Precision, Recall, F-
measure and Accuracy. For comparison reasons, we present also the results taken 
from our previous papers [8] and [2]. For the Multilayer Perceptron a new parameter 
appears: the number of neuron in the hidden layer. We chose to have only one hidden 
layer and in majority cases we keep the default number of neurons in the hidden layer. 
Only for 500 and 1000 features we make tests for a different number of neurons on 
hidden layer (smaller and greater) to see if the learning quality increases or not 
significantly. 
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200 101def 0.881 0.855 0.853 85.50 0.839 0.830 0.829 82.98 92.45 
300 151def  0.903 0.888 0.887 88.80 0.846 0.840 0.839 84.02 92.87 
400 201def  0.872 0.833 0.829 83.32 0.846 0.842 0.842 84.23 93.37 

500 
150 0.751 0.493 0.328 49.29 0.838 0.836 0.835 83.56 92.99 
251def 0.772 0.573 0.484 57.33 0.838 0.836 0.835 83.56 92.99 
550 0.750 0.510 0.345 50.99 0.838 0.836 0.835 83.56 92.99 

600 301def 0.750 0.510 0.345 50.99 0.836 0.834 0.834 83.40 93.12 

100
0 

250 0.260 0.509 0.344 50.95 0.843 0.842 0.842 84.23 93.16 
501def  0.241 0.491 0.323 49.05 0.843 0.842 0.842 84.23 93.16 
1024 0.750 0.510 0.345 50.99 0.843 0.842 0.842 84.23 93.16 

Table 1. Experimental Results 
From the experimental results, we notice that this type of classifier algorithm works 
very well with a small number of features, but when the number of features increases, 
the training time increase also or, worse, the network cannot learn. So that for 200 and 
300 features the network returns results better than Naïve Bayes (close to SVM) but, 
for more features, the learning quality decreases significantly. 

4 Conclusions 
In this paper, we use Information Gain as feature selection method (that was proven in 
one of our previous papers to be the best) and we evaluate an algorithm – Multilayer 
Perceptron with one hidden layer. This tested classifier is not so fast as Naïve Bayes 
but much faster comparatively with Support Vector Machine. 
As we might expect experimental results are not of the same quality comparatively 
with SVM (but are close for a small number of features) but are better comparatively 
with Naïve Bayes results. 
As further work we propose to classify large text data sets (the complete Reuters 
dataset) in order to see the behavior of Information Gain feature selection method and 
the Multilayer Perceptron in an industrial text classification problem. We try to make 
the representation and classification into two steps, in first step make a pre-
classification of all documents, obtain fewer representative samples and after that 
we’ll use only the obtained samples as input vectors for an information retrieval 
system. 
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