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Abstract:  
A time series modeling approach (Box-Jenkins’ ARIMA model) has been used in this 

study to forecast sugarcane production in India. The order of the best ARIMA model was found 
to be (2,1,0). Further, efforts were made to forecast, as accurate as possible, the future 
sugarcane production for a period upto five years by fitting ARIMA(2,1,0) model to our time 
series data. The forecast results have shown that the annual sugarcane production will grow in 
2013, then will take a sharp dip in 2014 and in subsequent years 2015 through 2017, it will 
continuously grow with an average growth rate of approximately 3% year-on-year.  
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1. Introduction 
 
India, known as the original home of sugar, is the world’s second largest 

producer (as on 2012) of sugarcane next only to Brazil. After textile industry, the sugar 
industry, with around Rs. 300 billions (= $5 billion, as on date $1 = INR60 approx.) of 
turnover, is the second largest among the agro-based processing industries in India. 
Table 1 below represents the 62 years’ sugarcane production in India. The data is 
taken from the secondary source, Department of Agriculture and Cooperation (DAC) in 
India, from 1950 to 2012.  

In this paper, an effort is made to forecast sugarcane production for the five 
leading years. The model developed for forecasting is an Autoregressive Integrated 
Moving Average (ARIMA) model. This model was introduced by Box and Jenkins in 
1960 and hence this model is also known as Box-Jenkins Model which is used to 
forecast a single variable. The main reason of choosing ARIMA model in this study for 
the forecasting is because this model assumes and takes into account the non-zero 
autocorrelation between the successive values of the time series data.  
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The open source statistical software ‘R’ (build 3.0.1) and various statistical and 
time series packages such as ‘tseries, ‘fUnitRoots’, ‘forecast’ and ‘TTR’ etc are used 
along with other standard packages for this study purpose. 
 

Table 1: Sugarcane Production in India (in Millions  of Tons) 

Sl 
No 

Year Production  
Sl 
No 

Year Production  
Sl 
No 

Year Production  

1 1950-51 57.05 22 1971-72 113.57 43 1992-93 228.04 

2 1951-52 61.63 23 1972-73 124.87 44 1993-94 229.66 

3 1952-53 51.00 24 1973-74 140.81 45 1994-95 275.54 

4 1953-54 44.41 25 1974-75 144.29 46 1995-96 281.10 

5 1954-55 58.74 26 1975-76 140.60 47 1996-97 277.56 

6 1955-56 60.54 27 1976-77 153.01 48 1997-98 279.55 

7 1956-57 69.05 28 1977-78 176.97 49 1998-99 288.73 

8 1957-58 71.16 29 1978-79 151.66 50 1999-00 299.33 

9 1958-59 73.36 30 1979-80 128.83 51 2000-01 295.96 

10 1959-60 77.82 31 1980-81 154.25 52 2001-02 298.43 

11 1960-61 110.00 32 1981-82 186.36 53 2002-03 281.58 

12 1961-62 103.97 33 1982-83 189.51 54 2003-04 233.87 

13 1962-63 91.91 34 1983-84 174.08 55 2004-05 237.09 

14 1963-64 104.23 35 1984-85 170.32 56 2005-06 281.18 

15 1964-65 121.91 36 1985-86 170.65 57 2006-07 355.52 

16 1965-66 123.99 37 1986-87 186.09 58 2007-08 348.19 

17 1966-67 92.83 38 1987-88 196.74 59 2008-09 285.03 

18 1967-68 95.50 39 1988-89 203.04 60 2009-10 292.31 

19 1968-69 124.68 40 1989-90 225.57 61 2010-11 339.17 

20 1969-70 135.02 41 1990-91 241.05 62 2011-12 342.20 

21 1970-71 126.37 42 1991-92 254.00       

Source: Department of Agriculture and Cooperation, India 

 
2. Literature Review 

 
Raymond Y.C. Tse, (1997) suggested that the following two questions must be 

answered to identify the data series in a time series analysis: (1) whether the data are 
random; and (2) have any trends? This is followed by another three steps of model 
identification, parameter estimation and testing for model validity. If a series is random, 
the correlation between successive values in a time series is close to zero. If the 



  
 

 

                                  Studies in Business and Economics 

                  Studies in Business and Economics - 83 - 
 

observations of time series are statistically dependent on each another, then the 
ARIMA is appropriate for the time series analysis. 

Meyler et al (1998) drew a framework for ARIMA time series models for 
forecasting Irish inflation. In their research, they emphasized heavily on optimizing 
forecast performance while focusing more on minimizing out-of-sample forecast errors 
rather than maximizing in-sample ‘goodness of fit’. 

Stergiou (1989) in his research used ARIMA model technique on a 17 years' 
time series data (from 1964 to 1980 and 204 observations) of monthly catches of 
pilchard (Sardina pilchardus) from Greek waters for forecasting up to 12 months ahead 
and forecasts were compared with actual data for 1981 which was not used in the 
estimation of the parameters. The research found mean error as 14% suggesting that 
ARIMA procedure was capable of forecasting the complex dynamics of the Greek 
pilchard fishery, which, otherwise, was difficult to predict because of the year-to-year 
changes in oceanographic and biological conditions. 

Contreras et al (2003) in their study, using ARIMA methodology, provided a 
method to predict next-day electricity prices both for spot markets and long-term 
contracts for mainland Spain and Californian markets. 

In fact a plethora of research studies is available to justify that a careful and 
precise selection of ARIMA model can be fitted to the time series data of single 
variable (with any kind of pattern in the series and with autocorrelations between the 
successive values in the time series) to forecast, with better accuracy, the future 
values in the series. This study is also an attempt to predict the future production 
values of sugarcane in India by fitting ARIMA technique on the time series data of past 
62 years’ productions. 
 

3. Box-Jenkins (ARIMA) Model: Basics 
 

A time series is defined as a sequence of data observed over time. ARIMA 
models are a class of models that have capabilities to represent stationary as well as 
non-stationary time series and to produce accurate forecasts based on a description of 
historical data of single variable. Since it does not assume any particular pattern in the 
historical data of the time series that is to be forecast, this model is very different from 
other models used for forecasting. The approach of Box-Jenkins methodology in order 
to build ARIMA models is based on the following steps: (1) Model Identification, (2) 
Parameter Estimation and Selection, (3) Diagnostic Checking (or Modal Validation); 
and (4) Model's use. 

Model identification involves determining the orders (p, d, and q) of the AR and 
MA components of the model. Basically it seeks the answers for whether data is 
stationary or non-stationary? What is the order of differentiation (d), which makes the 
time stationary? 
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4. Time Series Analysis and Building ARIMA 
 

The given set of data in Table 1 is used to develop forecasting model. The 
Picture 1 below represents the line plot of sugarcane production in India. 
 

 
 

Figure 1: Sugarcane Production (Million Tonnes) in India from 1951 to 2012 
 

Since we already have discussed that to build an ARIMA model for forecasting 
of a variable requires following steps: 1) Model Identification, (2) Parameter Estimation 
and Selection, and (3) Diagnostic Checking (or Modal Validation); before we can (4) 
use the Model for forecasting application. We, therefore, will first try to identify the 
model for fitness. 
 

5. Model Identification 
 

First stage of ARIMA model building is to identify whether the variable, which is 
being forecasted, is stationary in time series or not. By stationary we mean, the values 
of variable over time varies around a constant mean and variance. The time plot of the 
sugarcane production data in Picture 1 above clearly shows that the data is not 
stationary (actually, it shows an increasing trend in time series). The ARIMA model 
cannot be built until we make this series stationary. We first have to difference the time 
series ‘d’ times to obtain a stationary series in order to have an ARIMA(p,d,q) model 
with ‘d’ as the order of differencing used. Caution to be taken in differencing as over-
differencing will tend to increase in the standard deviation, rather than a reduction. The 
best idea is to start with differencing with lowest order (of first order, d=1) and test the 
data for unit root problems. So we obtained a time series of first order differencing and 
Figure 2 below is the line plot of the first order differenced sugarcane production data. 
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Figure 2: Line plot of differenced sugarcane produc tion data of first order (d=1) 

 
It can easily be inferred from the above graph (Picture 2) that the time series 

appears to be stationary both in its mean and variance. But before moving further, we 
will first test the differenced time series data for stationary (unit root problem) using 
augmented Dickey-Fuller test. 
 
 

6. Test for stationarity: Augmented Dickey-Fuller ( ADF) Test 
 

Our null hypothesis (H0) in the test is that the time series data is non-stationary 
while alternative hypothesis (Ha) is that the series is stationary. The hypothesis then is 
tested by performing appropriate differencing of the data in dth order and applying the 
ADF test to the differenced time series data. First order differencing (d=1) means we 
generate a table of differenced data of current and immediate previous one (Xt = Xt – 
Xt-1). The ADF test result, as obtained upon application, is shown below: 

 
Dickey-Fuller = -5.5395, Lag order = 3, p-value = 0.01 

 
We, therefore, fail to accept the H0 and hence can conclude that the alternative 

hypothesis is true i.e. the series is stationary in its mean and variance. Thus, there is 
no need for further differencing the time series and we adopt d = 1 for our 
ARIMA(p,d,q) model.  

This test enables us to go further in steps for ARIMA model development i.e. to 
find suitable values of p in AR and q in MA in our model. For that, we need to examine 
the correlogram and partial correlogram of the stationary (first order differenced) time 
series. 
 
 



     
 

 

Studies in Business and Economics 
 

- 86 -   Studies in Business and Economics 
  

 
7. Correlogram and Partial Correlogram 

 
The Figure 3 below represents the plot of correlogram (auto-correlation 

function, ACF) for lags 1 to 20 of the first order differenced time series of the 
sugarcane production in India. 

 

 
Figure 3: Autocorrelations (ACF) of first differenc ed series by lag 

 
The above correlogram infers that the auto-correlation at lag 1 does not 

exceed the significance limits and auto-correlations tail off to zero after lag 3. Although 
the autocorrelation at lag 5 just exceeds the significant limits (ACF coefficient at lag 5 = 
0.336), rest all coefficients between lag 4 and 20 are well within the limits. We can 
assume that lag 5 autocorrelation is an error and happened by chance alone. 
 

The Figure 4 below represents the partial correlogram (partial auto-correlation 
function, PACF) for lags 1 to 20 of the differenced time series. 

 
Figure 4: Partial Autocorrelations (PACF) of first differenced series by lag  
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The partial correlogram, above in Figure 4, also infers that partial auto-
correlation coefficient does not exceed significant limits at lag 1 and after lag 2 partial 
autocorrelation tails off to zero. Although here also we have one outlier at lag 7 
(coefficient at lag 7 is almost touching the significant limits), which we can assume that 
it is an error and happened due to by chance alone because all the other PACFs from 
lag 3 to 20 are within the significant limits. 

The Table 2 below represents the ACF and PACF coefficients for lag 1 to 20 of 
that first order differenced series. 
 

Table 2: ACF and PACF Coefficients for lag 1 to 20 

Lag ACF PACF Lag ACF PACF 

1 0.202 0.202 11 -0.07 -0.1 

2 -0.62 -0.685 12 0.132 -0.02 

3 -0.4 -0.094 13 0.091 -0.11 

4 0.213 -0.122 14 -0.15 -0.16 

5 0.336 -0.046 15 -0.14 -0.04 

6 -0.05 -0.155 16 0.087 -0.02 

7 -0.11 0.249 17 0.176 -0.01 

8 0.017 -0.095 18 -0.01 0.011 

9 -0.02 0.008 19 -0.09 0.138 

10 -0.1 -0.103 20 0.021 0.034 

 
Since the correlogram (ACF) tailing off to zero after lag 3 (omitting the outlier) 

and the partial correlogram (PACF) tailing off to zero after lag 2 (omitting the outlier), 
we can define the following possible ARMA (auto regressive moving average) models 
for the first differenced time series data of sugarcane production in India: 

1. An ARMA(2,0) model i.e. autoregressive model of order p=2 since the partial 
autocorrelation is zero after lag 2 and the autocorrelation is zero. 

2. An ARMA(0,3) model i.e. moving average model of order q=3 since the 
autocorrelation is zero after lag 3 and the partial autocorrelation is zero. 

3. An ARMA(p,q) model i.e. a mix model with p and q both greater than 0 since 
autocorrelation and partial autocorrelation both tail off to zero. 

 
8. Selecting the candidate model for forecasting 

 
Since ARMA(2,0) has 2 parameters in it, ARMA(0,3) has 3 parameters in it 

and ARMA(p,q) has at least 2 parameters in it, therefore, by using principle of 
parsimony, the models  ARMA(2,0) and ARMA(p,q) are the best candidate models for 
further step. In the next step, we have to device the best ARIMA model using the 
ARMA(2,0) model (with p=2 & q=0), ARMA(p,q) mixed model (with p & q both greater 
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than 0), and order of differencing . Therefore, based upon the conditions, we can have 
only following three tentative ARIMA(p,d,q) models: 

 
ARIMA(p,d,q): ARIMA(2,1,0), ARIMA(2,1,1), and ARIMA(2,1,2) 

 
To select as the best suitable model for forecasting out of three above, we will 

choose the one with lowest BIC (Bayesian Information Criterion) and AIC (Akaike 
Information Criterion) values. Following Table 3 summarizes the output of each of the 
fitted ARIMA model in our time series (of sugarcane production data): 
 

Table 3: AIC and BIC values of fitted ARIMA models 

ARIMA 
Model  

Coefficients σ
2 Log 

AIC BIC AICc 
AR1 AR2 MA1 MA2 (Est) Liklihood  

(2,1,0) 0.3783 -0.6652     265.4 -257.39 520.78 527.11 521.2 

(2,1,1) 0.3733 -0.6639 0.0088   265.3 -257.39 522.77 531.22 523.49 

(2,1,2) 0.3518 -0.7594 0.0118 0.1754 262.1 -257.06 524.12 534.68 525.21 
 

We can clearly observe in the table above that the lowest AIC and BIC values 
are for the ARIMA(2,1,0) model with (p=2, d=1 and q=0) and hence this model can be 
the best predictive model for making forecasts for future values of our time series data. 
 

9. Forecasting using selected ARIMA model 
 

The above selected model ARIMA(2,1,0), which we are fitting to our time 
series data, means that we are fitting ARMA(2,0) model of first order difference to our 
time series. Also, ARMA(2,0) model, which has two parameters in it, can be rewritten 
an AR model of order 2, or AR(2) model, since q is zero in MA. Therefore, this model 
can be expressed as:  

 
Xt = µ + (β1 * (Zt-1 - µ)) + (β2 * (Zt-2 - µ)) + εt, 

 
Where Xt is the stationary time series we are studying, µ is the mean of time 

series Xt, β1 and β2 are parameters to be estimated (the AR1 and AR2 terms in the 
fitted ARIMA(2,1,0) model values as above in Table 3, i.e. AR1 = 0.3783 and AR2= -
0.6652), and εt is white noise with mean zero and constant variance. One caution here, 
as a standard for a stationary differenced time series, the mean (µ) should be either 
equal or very close to zero. If µ is not zero (as in our case it is 5.13), we use the value 
of the mean in the above equation for forecasting the future values. 

We now will fit the chosen ARIMA(2,1,0) model to forecast for the future values 
of our time series. Following Table 4 shows the forecast for the next 5 years with 80%, 
95% and 99.5% (low and high) prediction intervals: 
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Table 4: 5-Year Forecasting for Sugarcane Productio n 

Prediction  Forecast  Low 80  High 80  Low 95  High 95  Low 99.5  High 99.5  

2013 350.489 329.614 371.365 318.563 382.416 304.764 396.215 

2014 322.601 287.053 358.149 268.235 376.967 244.739 400.463 

2015 325.031 285.243 364.818 264.181 385.881 237.882 412.179 

2016 344.502 303.817 385.187 282.28 406.724 255.388 433.615 

2017 350.25 307.776 392.725 285.291 415.21 257.216 443.285 

 
Figure 5 and Figure 6 below show the plot for 5 years’ forecast of the 

sugarcane production by fitting ARIMA(2,1,0) model to our time series data: 

 
Figure 5: Forecasts from ARIMA(2,1,0) 

 
In the picture above, the two shaded zones of forecast represent the 80% and 

95% (lower and upper side) projection of prediction intervals. 
 

 
Figure 6: Forecast fitted with ARIMA(2,1,0) 
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The Figure 6 above shows the fitted ARIMA(2,1,0) along with upper control 
limit and lower control limit of forecast.  
 

Next, we will investigate (1) the forecast errors of our ARIMA(2,1,0) model, 
whether or not these are normally distributed with mean zero and constant variance; 
(2) whether there are any correlations between successive forecast errors; and (3) if 
residuals are white noise.  
 

To investigate distribution of forecasting errors, we will plot the errors 
(standard residuals). Pictures 6(a), 6(b), 6(c), 6(d) and 6(e) below show various plots 
and histograms of standard residuals (forecast errors) of fitted ARIMA(2,1,0) model: 
 

 
Figure 6 (a): Plot of Standard residual of fitted A RIMA(2,1,0) 

 

 
Figure 6 (b): Plot of Residuals (Forecast Errors) –  ARIMA(2,1,0) 
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Figure 6 (c): Histogram of Forecast Errors (Residua ls) – ARIMA(2,1,0) 

 

 
Figure 6 (d): Histogram of Residuals (Forecast Erro rs) – ARIMA(2,1,0) 

 

 
Figure 6 (e): Normal Q-Q Plot of Residuals (Forecas t Errors) – ARIMA(2,1,0) 
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The careful investigation from the various line plots and Q-Q plot of standard 
residuals in the fitted model (above in Picture 6(a) and 6(b)) infers that standard errors 
are roughly constant in its mean and variance overtime (although there seems to be 
some higher variance towards the end of the time series i.e. in the most recent 
decade). This is confirmed by the histograms of the residuals as well (Picture 7(c) and 
7(d)). The two histograms (of the errors’ distribution) above infer that the errors are 
(almost) normally distributed and mean of the distribution seems to be zero. The Q-Q 
plot in Picture 7 (e) also seems to confirm the normality in errors.  

To investigate further whether there are any correlations between successive 
forecast errors, we will plot the correlogram (ACF) and partial correlogram (PACF) of 
the forecast errors. Following Pictures 7(a) and 7(b) represents ACF and PACF of the 
forecast errors: 

 
Figure 7(a): Estimated ACF of Residuals (Forecast E rrors) – ARIMA(2,1,0) 

 
It is clearly evident from the ACF plot above that none of the autocorrelation 

coefficients between lag 1 and 20 are breaching the significant limits i.e. all the ACF 
values are well within the significant bounds.  

 
Figure 7(b): Estimated PACF of Residuals – ARIMA(2, 1,0) 
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Similarly ACFs, all the PACFs or partial autocorrelation coefficients of residuals 
of fitted ARIMA for lag 1 to lag 10 are within the significant limits. This means ACF and 
PACF concluded that there is no non-zero autocorrelations in the forecast residuals (or 
standard errors) at lag 1 to 20 in the fitted ARIMA(2,1,0) model. The Box-Ljung test 
results are shown in the Table 5 below shows the Box-Ljung and Box-Pierce test 
statistics while Picture 8 below represents the plot of Box-Ljung p-values for the fitted 
model: 
 

Table 5: Box -Ljung and Box -Pierce Test Statistics  
Test  X2 Deg. Of Freedom  p-value  

Box -Ljung  17.6672 20 0.6093 
Box -Pierce  14.8789 20 0.7832 

 

 
Figure 7: Plot of Ljung-Box p-values of fitted ARIM A(2,1,0) 

 
The statistics and large p-values in both the tests above is suggesting us to accept 

the null hypothesis that all of the autocorrelation functions in lag 1 to 20 are zero. In 
other words, we can conclude that there is no (or almost nil) evidence for non-zero 
autocorrelations in the forecast errors at lags 1 to 20 in our fitted model. 
 

10.  Conclusions 
 

In this study, the ARIMA(2,1,0) was the best candidate model selected for 
making predictions for upto 5 years for the production of sugarcane in India using a 62 
years' time series data. ARIMA was used for the reasons of its capabilities to make 
predictions using a time series data with any kind of pattern and with autocorrelations 
between the successive values in the time series. The study also statistically tested 
and validated that the successive residuals (forecast errors) in the fitted ARIMA time 
series were not correlated, and the residuals seem to be normally distributed with 
mean zero and constant variance. Hence, we can conclude that the selected 
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ARIMA(2,1,0) seem to provide an adequate predictive model for the sugarcane 
production in India.  

The ARIMA(2,1,0) model predicted an increase in the production for year 
2013, then a fall in 2014 and in subsequent year upto 2017, overall an increase in 
production (Table 5). The prediction for 2013 is resulted approximately 350 million tons 
(±6% at confidence interval 80%, ±9% at confidence interval 95% and ±13% at 
confidence interval 99.5%) and for 2014, the prediction is approximately 322 million 
tons (±11% at confidence interval 80%, ±17% at confidence interval 95% and ±24% at 
confidence interval 99.5%). 

Although, like any other predictive models in forecasting, ARIMA also has 
limitations on accuracy of predictions yet it is used more widely for forecasting the 
future successive values in the time series. 
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